Success Stories: The Osteoporotic Virtual Physiological Human

Osteoporosis is becoming one of the most serious diseases for the European ageing population: nearly four million osteoporotic bone fractures cost the European health system more than €30 billion per year, and kill 250,000 elders for related complications; this figure could double by 2050. Today a woman has the same probability to die of a hip fracture than of breast cancer. The aim of VPHOP project is to develop a novel multiscale modelling technology that could fight osteoporosis by predicting the bone risk of fracture more effectively than the current Standard of Care. With VPHOP, the European Virtual Physiological Human Initiative exhibits the potential to address today's socio-economic challenges and gain technologically competitive advantages for Europe.

In the last two years 50,000 individuals were forced to walk, stair climb, jump, trip, and fall while a groups of researchers observed, measured, probed and poked them as they fractured their hips, their bones and spine. Sounds immoral? It is not; it is virtual! This huge simulation required a truly powerful computer, an IBM PLX supercomputer with the power of 2290 personal computers. After two days of intense calculations the supercomputer predicted that every year in the general population of Italian we should expect two spontaneous fractures for each thousand citizens; this is a very accurate prediction, according to the recent epidemiological data study that analysed the incidence of spontaneous fracture in the general Italian population. This is already a success story in itself and for the Virtual Physiological Human initiative at large. It proves that is possible to build computer models that account for very many different processes that form a disease all together, and that can be personalised with the data of each individual to make accurate predictions that can be used to diagnose the disease and plan its most appropriate personalised treatment. The heart of the VPHOP hypermodel beats in Bologna (IT) where researchers at the Rizzoli Orthopaedic Institute and at Super Computing Solutions centre developed the first prototype of what will become the VPHOP hypermodel. In this first prototype the single models are not directly integrated, but each model is run separately, and the various results are combined using a probabilistic model of the disease.

The whole body models developed at Charité Universitätsmedizin Berlin (DE) for 90 patients that were examined in depth using some of the most advanced imaging and neuromotor analysis technologies available worldwide developed at provided a database of loads acting on the skeleton during various daily activities, for a wide range of body weights, heights, ages, life styles, etc.

Researchers at the Technische Universiteit Eindhoven (Netherlands), in collaboration with Philips Medical Systems Nederland (NL), used high resolution images of the bone tissue to build a computer model capable of predicting for each patient the strength of the tissue that form each bone of the skeleton.

The team at Eidgenössische Technische Hochschule Zuerich (CH) developed a computer model capable of predicting how the bone tissue will change over time due to the progression of the disease, and how this progression can be modified by different pharmacological treatment, whereas the Universitaet Bern (CH) are exploring the effect of other type of treatment for patients at very high risk.

Societal and economic Impact
The VPHOP Clinical Decision-Support Model already started demonstrating how, for the first time, a highly sensitive bone-fractureprediction is realisable, i.e. personalised, predictive medicine at its best. This will change fundamentally the clinical approach to diagnosing and treating osteoporotic fracture and, respectively, establish a highly innovative global benchmark process for clinical practice in this medical domain. To substantiate these expectations, based on an innovative evaluation methodology, the likely impact of the new clinical intervention on the real-life clinical setting has been assessed, guaranteeing early application in the hospital environment, thereby also early industrial exploitation and sustainable business models.

For further information, please visit:
http://www.vphop.eu

Related news articles:

ICT for Health,
European Commission - Information society and Media DG,
Office: BU31 01/79 B-1049 Brussels
Tel: +32 (0)2 296 41 94
Fax: 02 296 01 81
http://ec.europa.eu/information_society/ehealth

About the Osteoporotic Virtual Physiological Human (VPHOP)
VPHOP is a Collaborative Integrated Project that is developing simulation-based technology to predict the risk of bone fracture in osteoporosis patients. Co-funded by the European Commission as part of the Seventh Framework Program. The project runs for four years starting from September 2008. Coordinated by Rizzoli Orthopaedic Institute, the Project Consortium gathers 19 European Organisations based in Italy, The Netherlands, Germany, Switzerland, Belgium, France, United Kingdom, Sweden, and Iceland.

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...