MHP-Net: A Revolutionary AI Model for Accurate Liver Tumor Segmentation for Diagnosis and Therapy

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the disease, but manual segmentation by radiologists is labor-intensive and often results in variations based on expertise. Artificial intelligence (AI)-based tumor segmentation models have revolutionized tumor assessment in medical imaging - using deep convolutional neural networks, they identify and outline the exact shape, size, and location of a tumor in a medical scan image. But their efficacy comes with a heavy dependence on large volumes of data (typically ranging from 1,000 to 10,000 cases). This requirement for big data is a major barrier in medical AI.

To overcome this barrier, a team of researchers led by Professor Kenji Suzuki and a PhD student, Yuqiao Yang, from the Biomedical AI Research Unit of Institute of Science Tokyo (Science Tokyo), Japan, has developed a groundbreaking AI model that can accurately segment liver tumors from computed tomography (CT) scans - even when trained using extremely small datasets - surpassing the performance of current state-of-the-art systems. Their study was published in Volume 13 of the journal IEEE Access on May 16, 2025.

At the heart of this innovation is a novel architecture called the multi-scale Hessian-enhanced patch-based neural network (MHP-Net). MHP-Net works by breaking medical images into small 3D image patches - so the AI can focus on one part at a time rather than the entire image. It then pairs each patch from the original CT image with a corresponding enhanced version, achieved through a technique called Hessian filtering. Hessian filtering helps highlight spherical objects such as tumors in the image.

The result is a high-resolution tumor segmentation map that accurately delineates liver tumors from contrast-enhanced CT scans. To evaluate the model’s performance, the team used the "Dice similarity score," which compares how well the predicted segmentation matches the ground truth (usually annotated by expert radiologists) on a scale of 0 to 1.

"Despite a limited training set of 7, 14, and 28 tumors, we achieved high performance dice scores of 0.691, 0.709, and 0.719, respectively," notes Suzuki. "With these scores, our model surpasses major established models such as U-Net, Res U-Net, and HDense-U-Net."

Apart from its promising performance, the lightweight architecture of the model allows for fast training (under 10 minutes) and real-time inference (~4 seconds per patient), making it highly suitable for use even in clinical settings with limited computational resources.

"This is just a start in the field of small-data AI, where meaningful and clinically relevant deep learning models can be built from limited datasets." Says Suzuki. "MHP-Net's success can inspire small-data AI solutions in other areas of medical imaging as well, such as the detection of rare cancers."

The study marks the potential of small-data AI in medical image analysis. By lowering the threshold for the data required for training, MHP-Net democratizes the use of AI in medical image analysis, especially in under-resourced hospitals and clinics with limited access to data. In the future, the researchers plan to explore broader applications of the small-data AI models - enabling scalable, cost-effective, and versatile deployment of AI in healthcare worldwide.

Yang Y, Sato M, Jin Z, Suzuki K.
Patch-based Deep-learning Model with Limited Training Dataset for Liver Tumor Segmentation in Contrast-enhanced Hepatic Computed Tomography.
IEEE Access. 2025. doi: 10.1109/ACCESS.2025.3570728

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...