AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support medical practice, AI models must be capable of processing multimodal data and have reasoning and problem-solving capabilities that resemble those of humans.

To build an autonomous AI agent for precision medicine, the researchers enhanced the large language model GPT-4 with several digital tools - including radiology report generation from MRI and CT scans, medical image analysis, prediction of genetic alterations directly from histopathology slides, and search functions across platforms such as PubMed, Google and OncoKB. To ensure that decisions were grounded in current medical knowledge, the model was given access to around 6,800 documents compiled from official oncology guidelines and clinical resources.

The AI agent was evaluated on 20 real-world, simulated patient cases using a two-step process: First, the system selected appropriate tools, then it retrieved relevant medical information to guide its reasoning. The outputs were reviewed by human medical experts for accuracy, completeness, and correct citation of sources. The AI agent reached correct clinical conclusions in 91% of cases and accurately cited relevant oncology guidelines in over 75% of its responses. Importantly, the use of specialized tools and medical information retrieval significantly improved the model’s performance. As a result, so-called "hallucinations" - seemingly plausible but incorrect statements - were significantly reduced. This improvement is particularly important in the sensitive area of healthcare.

"AI tools are designed to support medical professionals, freeing up valuable time for patient care," says Dyke Ferber, first author of the publication. "They could help in daily decision-making processes and support doctors to stay updated on the latest treatment recommendations, contributing to the identification of optimal personalized care for cancer patients."

The study serves as proof of principle that AI agents can be designed to support oncologists in everyday clinical practice. Despite the promising results, the researchers acknowledge current limitations of their study. The system was only tested on a small number of simulated cases and requires further validation. Future work will focus on integrating conversational capabilities with human feedback - so-called "human-in-the-loop" interactions - and ensuring data privacy through deployment on local servers.

"To fully leverage the potential of AI agents in the future, it will be crucial to integrate them smoothly into routine clinical practice with minimal disruption," says Prof. Jakob N. Kather, Professor of Clinical Artificial Intelligence at EKFZ for Digital Health at TU Dresden, and oncologist at Dresden University Hospital Carl Gustav Carus. "Challenges such as interoperability with existing systems, compliance with data privacy laws, the need for regulatory approval processes as medical devices, and ensuring accountability still need to be addressed."

Long-term, the research team envisions that similar AI agents could be adapted for use in other medical fields - provided they are equipped with appropriate tools and data. "For successful implementation of medical AI agents, medical professionals need to be well educated on how to effectively collaborate with these systems while maintaining full authority over final clinical decision-making," Prof. Kather adds. "These agents are designed to support clinicians, but by no means to replace them."

Overall, the study highlights the considerable potential of large language models when combined with precision oncology and search tools, establishing a solid foundation for the future use of AI-driven, personalized support systems in clinical practice.

Ferber D, El Nahhas OSM, Wölflein G, Wiest IC, Clusmann J, Leßmann ME, Foersch S, Lammert J, Tschochohei M, Jäger D, Salto-Tellez M, Schultz N, Truhn D, Kather JN.
Development and validation of an autonomous artificial intelligence agent for clinical decision-making in oncology.
Nat Cancer. 2025 Jun 6. doi: 10.1038/s43018-025-00991-6

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...