AI Detects Hidden Heart Disease Using Existing Scans Stored in Patient Records

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify individuals with high coronary artery calcium (CAC) levels that place them at a greater risk for cardiovascular events. Their research, published in NEJM AI, showed the tool called AI-CAC had high accuracy and predictive value for future heart attacks and 10-year mortality. Their findings suggest that implementing such a tool widely may help clinicians assess their patients’ cardiovascular risk.

"Millions of chest CT scans are taken each year, often in healthy people, for example to screen for lung cancer. Our study shows that important information about cardiovascular risk is going unnoticed in these scans," said senior author Hugo Aerts, PhD, director of the Artificial Intelligence in Medicine (AIM) Program at Mass General Brigham. "Our study shows that AI has the potential to change how clinicians practice medicine and enable physicians to engage with patients earlier, before their heart disease advances to a cardiac event."

Chest CT scans can detect calcium deposits in the heart and arteries that increase the risk of a heart attack. The gold standard for quantifying CAC uses "gated" CT scans, that synchronize to the heartbeat to reduce motion during the scan. But most chest CT scans obtained for routine clinical purposes are "nongated."

The researchers recognized that CAC could still be detected on these nongated scans, which led them to develop AI-CAC, a deep learning algorithm to probe through the nongated scans and quantify CAC to help predict the risk of cardiovascular events. They trained the model on chest CT scans collected as part of the usual care of veterans across 98 VA medical centers and then tested AI-CAC’s performance on 8,052 CT scans to simulate CAC screening in routine imaging tests.

The researchers found the AI-CAC model was 89.4% accurate at determining whether a scan contained CAC or not. For those with CAC present, the model was 87.3% accurate at determining whether the score was higher or lower than 100, indicating a moderate cardiovascular risk. AI-CAC was also predictive of 10-year all-cause mortality - those with a CAC score of over 400 had a 3.49 times higher risk of death over a 10-year period than patients with a score of zero. Of the patients the model identified as having very high CAC scores (greater than 400), four cardiologists verified that almost all of them (99.2%) would benefit from lipid lowering therapy.

"At present, VA imaging systems contain millions of nongated chest CT scans that may have been taken for another purpose, around 50,000 gated studies. This presents an opportunity for AI-CAC to leverage routinely collected nongated scans for purposes of cardiovascular risk evaluation and to enhance care," said first author Raffi Hagopian, MD, a cardiologist and researcher in the Applied Innovations and Medical Informatics group at the VA Long Beach Healthcare System. "Using AI for tasks like CAC detection can help shift medicine from a reactive approach to the proactive prevention of disease, reducing long-term morbidity, mortality and healthcare costs."

Limitations to the study include the fact that the algorithm was developed on an exclusively veteran population. The team hopes to conduct future studies in the general population and test whether the tool can assess the impact of lipid-lowering medications on CAC scores.

Hagopian R, Strebel T, Bernatz S, Myers GA, Offerman E, Zuniga E, Kim CY, Ng AT, Iwaz JA, Nürnberg L, Singh SP.
AI Opportunistic Coronary Calcium Screening at Veterans Affairs Hospitals.
NEJM AI, 2025 May. 2025 doi: 10.1056/AIoa2400937

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...