VPHOP

Nearly four million osteoporotic bone fractures cost the European health system more than 30 billion Euro per year. This figure could double by 2050. After the first fracture, the chances of having another one increase by 86%. We need to prevent osteoporotic fractures. The first step is an accurate prediction of the patient-specific risk of fracture that considers not only the skeletal determinants but also the neuromuscular condition.

The aim of VPHOP is to develop a multiscale modelling technology based on conventional diagnostic imaging methods that makes it possible, in a clinical setting, to predict for each patient the strength of his/her bones, how this strength is likely to change over time, and the probability that the he/she will overload his/her bones during daily life. With these three predictions, the evaluation of the absolute risk of bone fracture will be much more accurate than any prediction based on external and indirect determinants, as it is current clinical practice.

These predictions will be used to:

  • improve the diagnostic accuracy of the current clinical standards;
  • to provide the basis for an evidence-based prognosis with respect to the natural evolution of the disease, to pharmacological treatments, and/or to preventive interventional treatments aimed to selectively strengthen particularly weak regions of the skeleton.

For patients at high risk of fracture, and for which the pharmacological treatment appears insufficient, the VPHOP system will also assist the interventional radiologist in planning the augmentation procedure. The various modelling technologies developed during the project will be validated not only in vitro, on animal models, or against retrospective clinical outcomes, but will also be assessed in term of clinical impact and safety on small cohorts of patients enrolled at four different clinical institutions, providing the factual basis for effective clinical and industrial exploitations.

For further information, please visit:
http://www.vphop.eu

Project co-ordinator:
Istituto Ortopedico Rizzoli

Partners:

  • SCS SRL
  • Société d’Etudes et de Recherches de l’Ecole Nationale Supérieure d’Arts et Métiers
  • Universität Bern
  • Biospace Med SA
  • University of Bedfordshire
  • Technische Universiteit Eindhoven
  • Philips Medical Systems Nederland BV
  • empirica Gesellschaft für Kommunikations- und Technologieforschung mbH
  • Université de Genève (UNIGE)
  • Sylvia Lawry Centre for Multiple Sclerosis Research e.V.
  • ANSYS France SAS
  • Háskóli Íslands
  • Institut National de la Santé et de la Recherche Médicale (INSERM)
  • Uppsala universitet
  • Charité - Universitätsmedizin Berlin
  • Eidgenössische Technische Hochschule Zürich (ETHZ)
  • BrainLAB AG
  • Katholieke Universiteit Leuven

Timetable: from 08/2008 – to 08/2012

Total cost: € 12.073.349

EC funding: € 8.989.363

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)

Related news articles::

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...