VPHOP

Nearly four million osteoporotic bone fractures cost the European health system more than 30 billion Euro per year. This figure could double by 2050. After the first fracture, the chances of having another one increase by 86%. We need to prevent osteoporotic fractures. The first step is an accurate prediction of the patient-specific risk of fracture that considers not only the skeletal determinants but also the neuromuscular condition.

The aim of VPHOP is to develop a multiscale modelling technology based on conventional diagnostic imaging methods that makes it possible, in a clinical setting, to predict for each patient the strength of his/her bones, how this strength is likely to change over time, and the probability that the he/she will overload his/her bones during daily life. With these three predictions, the evaluation of the absolute risk of bone fracture will be much more accurate than any prediction based on external and indirect determinants, as it is current clinical practice.

These predictions will be used to:

  • improve the diagnostic accuracy of the current clinical standards;
  • to provide the basis for an evidence-based prognosis with respect to the natural evolution of the disease, to pharmacological treatments, and/or to preventive interventional treatments aimed to selectively strengthen particularly weak regions of the skeleton.

For patients at high risk of fracture, and for which the pharmacological treatment appears insufficient, the VPHOP system will also assist the interventional radiologist in planning the augmentation procedure. The various modelling technologies developed during the project will be validated not only in vitro, on animal models, or against retrospective clinical outcomes, but will also be assessed in term of clinical impact and safety on small cohorts of patients enrolled at four different clinical institutions, providing the factual basis for effective clinical and industrial exploitations.

For further information, please visit:
http://www.vphop.eu

Project co-ordinator:
Istituto Ortopedico Rizzoli

Partners:

  • SCS SRL
  • Société d’Etudes et de Recherches de l’Ecole Nationale Supérieure d’Arts et Métiers
  • Universität Bern
  • Biospace Med SA
  • University of Bedfordshire
  • Technische Universiteit Eindhoven
  • Philips Medical Systems Nederland BV
  • empirica Gesellschaft für Kommunikations- und Technologieforschung mbH
  • Université de Genève (UNIGE)
  • Sylvia Lawry Centre for Multiple Sclerosis Research e.V.
  • ANSYS France SAS
  • Háskóli Íslands
  • Institut National de la Santé et de la Recherche Médicale (INSERM)
  • Uppsala universitet
  • Charité - Universitätsmedizin Berlin
  • Eidgenössische Technische Hochschule Zürich (ETHZ)
  • BrainLAB AG
  • Katholieke Universiteit Leuven

Timetable: from 08/2008 – to 08/2012

Total cost: € 12.073.349

EC funding: € 8.989.363

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)

Related news articles::

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...