Giving Doctors an AI-Powered Head Start on Skin Cancer

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously, developed by an international team of researchers led by Monash University.

Featured in Nature Medicine, PanDerm is one of the first AI models built specifically to assist with real-world dermatological medical practice by analysing multiple types of images, including close-up photos, dermoscopic images, pathology slides, and total body photographs.

A series of evaluations showed PanDerm improved skin cancer diagnosis accuracy by 11 per cent when used by doctors. The model helped non-dermatologist healthcare professionals improve diagnostic accuracy on various other skin conditions by 16.5 per cent.

It also showed the ability to detect skin cancer early, identifying concerning lesions before clinician detection.

Trained on more than two million skin images, data for the model was sourced from 11 institutions in multiple countries, across four types of medical images.

AI and computer vision expert and one of the lead co-authors of the research, Associate Professor Zongyuan Ge from Monash University’s Faculty of Information Technology, said existing AI models for dermatology remain limited to isolated tasks, such as diagnosing skin cancer from dermoscopic images; magnified images of skin captured using a dermoscope tool.

"Previous AI models have struggled to integrate and process various data types and imaging methods, reducing their usefulness to doctors in different real-world settings," Associate Professor Ge said.

"PanDerm is a tool designed to work alongside clinicians, helping them interpret complex imaging data and make informed decisions with more confidence."

Unlike existing models, which are trained to perform a single task, PanDerm was evaluated on a wide range of clinical tasks such as skin cancer screening, predicting the chance of cancer returning or spreading, skin type assessment, mole counting, tracking lesion changes, diagnosing a wide range of skin conditions, and segmenting lesions.

It consistently delivered best-in-class results, often with just 5-10 per cent of the labelled data normally required.

In clinical settings, PanDerm functions as a support tool that analyses the spectrum of skin images that doctors routinely use. The system processes these images and provides diagnostic probability assessments, helping clinicians interpret visual data with greater confidence.

This integration is particularly valuable for improving diagnostic accuracy among non-specialists, detecting subtle lesion changes over time, and assessing patient risk levels.

First author and PhD student Siyuan Yan from Monash University Faculty of Engineering said the multimodal approach was key to the system's success.

"By training PanDerm on diverse data from different imaging techniques, we've created a system that can understand skin conditions the way dermatologists do; by synthesising information from various visual sources," Mr Yan said.

"This allows for more holistic analysis of skin diseases than previous single-modality AI systems."

With skin conditions now impacting 70 per cent of the global population, early detection is crucial and can lead to better treatment outcomes.

Lead co-author of the paper, Alfred Health Victorian Melanoma Service Director, Professor Victoria Mar, said PanDerm shows promise in helping detect subtle changes in lesions over time and provide clues to lesion biology and future risk of spread.

"This kind of assistance could support earlier diagnosis and more consistent monitoring for patients at risk of melanoma," Professor Mar said.

"In hospitals or clinic settings, doctors use diverse ways and different types of images to diagnose skin cancer or other skin conditions."

University of Queensland Dermatology Research Centre Director and one of the lead co-authors of the research, Professor H. Peter Soyer, said differences in imaging and diagnosis techniques could also arise due to different levels of resources available in urban, regional and rural healthcare spaces.

"The strength of PanDerm lies in its ability to support existing clinical workflows," Professor Soyer said.

"It could be particularly valuable in busy or resource-limited settings, or in primary care where access to dermatologists may be limited.

"We have seen that the tool was also able to perform strongly even when trained on only a small amount of labelled data, a key advantage in diverse medical settings where standard annotated data is often limited."

Senior co-author Professor Harald Kittler from Medical University of Vienna Department of Dermatology said PanDerm demonstrated how global collaboration and diverse clinical data can be used to build AI tools that are not only technically strong but also clinically relevant across different healthcare systems.

"Its ability to support diagnosis in varied real-world settings, including in Europe, is a step forward in making dermatological expertise more accessible and consistent worldwide," Professor Kittler said.

Though showing promising research results, PanDerm is currently in the evaluation phase before broader healthcare implementation.

Looking to the future, the researchers aim to develop more comprehensive evaluation frameworks that address a wider range of dermatological conditions and clinical variants.

The team plans to establish standardised protocols for cross-demographic assessments and further investigate the model's performance in varied real-world clinical settings, with a particular focus on ensuring equitable performance across different patient populations and healthcare environments.

Yan S, Yu Z, Primiero C, Vico-Alonso C, Wang Z, Yang L, Tschandl P, Hu M, Ju L, Tan G, Tang V, Ng AB, Powell D, Bonnington P, See S, Magnaterra E, Ferguson P, Nguyen J, Guitera P, Banuls J, Janda M, Mar V, Kittler H, Soyer HP, Ge Z.
A multimodal vision foundation model for clinical dermatology.
Nat Med. 2025 Jun 6. doi: 10.1038/s41591-025-03747-y

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...