VPH NoE

The Virtual Physiological Human Network of Excellence (VPH NoE) proposal has been designed with 'service to the community' of VPH researchers as its primary purpose. Its aims range from the development of a VPH ToolKit and associated infrastructural resources, through integration of models and data across the various relevant levels of physiological structure and functional organisation, to VPH community building and support. The VPH NoE aims to foster the development of new and sustainable educational, training and career structures for those involved in VPH related science, technology and medicine, and will lay the foundations for a future Virtual Physiological Human Institute.

The VPH NoE constitutes a leading group of universities, institutes and organisations who will, by integrating their experience and ongoing activities in VPH research, promote the creation of an environment that actively supports and nurtures interdisciplinary research, education, training and strategic development. The VPH NoE will lead the coordination of diverse activities within the VPH initiative to deliver: new environments for predictive, patient-specific, evidence-based, more effective and safer healthcare; improved semantic interoperability of biomedical information and contribution to a common health information infrastructure; facile, on-demand access to distributed European computational infrastructure to support clinical decision making; and increased European multidisciplinary research excellence in biomedical informatics and molecular medicine by fostering closer cooperation between ICT, medical device, medical imaging, pharmaceutical and biotech companies.

The VPH NoE will connect the diverse VPH projects, including not only those funded as part of the VPH initiative but also those of previous EC frameworks and national funding schemes, together with industry, healthcare providers, and international organisations, thereby ensuring that these impacts will be realised.

For further information, please visit:
http://www.vph-noe.eu

Project co-ordinator:
University College London (UCL)

Partners:

  • Institut Municipal d'Assistència Sanitària (IMAS)
  • Centre National de la Recherche Scientifique (CNRS)
  • The University of Nottingham
  • Europäisches Laboratorium für Molekularbiologie EMBL
  • The Chancellor, Master and Scholars of the University of Oxford
  • GEIE ERCIM
  • The University of Sheffield
  • Universitat Pompeu Fabra
  • Université Libre de Bruxelles
  • Institut National de Recherche en Informatique et en Automatique
  • The University of Auckland
  • Karolinska Institutet

Timetable: from 06/2008 - to 11/2012

Total cost: € 9.649.516

EC funding: € 7.999.367

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Networks of Excellence


Related news article:

Most Popular Now

Collective Intelligence can Help Reduce …

An estimated 250,000 people die from preventable medical errors in the U.S. each year. Many of these errors originate during the diagnostic process. A powerful way to increase diagnostic accuracy...

Software Created from 'Building Blo…

New 'building-block' approaches to the creation of digital tools which include data and artificial intelligence (AI) could play a key role in improving the running of hospital wards and disease...

How could Technology Better Support Pati…

The NHS exists to serve patients. But more could be done to make their experience a key focus when it comes to technology adoption, senior NHS delegates told a recent...

"Showtime" for Digital Health …

13 - 16 November 2023, Düsseldorf, Germany. A hundred start-ups and more than 120 high-calibre professional speakers: These are just the "naked" facts which this year's MEDICA CONNECTED HEALTHCARE FORUM will...

Artificial Intelligence: Unexpected Resu…

Artificial intelligence (AI) is on the rise. Until now, AI applications generally have "black box" character: How AI arrives at its results remains hidden. Prof. Dr. Jürgen Bajorath, a cheminformatics...

Philips Program Developing AI-Powered Ul…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it has received a second round of funding from the Bill & Melinda Gates Foundation to...

CGM Continues to Drive Digitization in H…

CompuGroup Medical SE & Co. KGaA (CGM), one of the world's leading e-health providers, successfully progressed the digitization in healthcare during the first three quarters in 2023. CGM supports physicians...

Wolverhampton's New 10-Year EPR Dea…

The Royal Wolverhampton NHS Trust (RWT) has just signed a 10-year contract with System C for an integrated electronic patient record (EPR) system, which will replace the trust's in-house built...

Printed Robots with Bones, Ligaments, an…

3D printing is advancing rapidly, and the range of materials that can be used has expanded considerably. While the technology was previously limited to fast-curing plastics, it has now been...

Orchestrating the New World of AI in Hea…

Orion Health's UK and Ireland Customer Conference 2023 focused on the future potential and immediate, practical application of AI to healthcare - and gave delegates a first look at the...

Researchers Take New AI Approach to Anal…

Researchers at Karolinska Institutet and SciLifeLab in Sweden have combined artificial intelligence (AI) techniques used in satellite imaging and community ecology to interpret large amounts of data from tumour tissue...

AI identifies Non-Smokers at High Risk f…

Using a routine chest X-ray image, an artificial intelligence (AI) tool can identify non-smokers who are at high risk for lung cancer, according to a study being presented next week...