What's Your Gut Telling You?

Millions of people suffer from these painfully common conditions, and often endure inconvenient and invasive medical procedures to diagnose the causes.

In a study published in Nature Electronics, Khalil B. Ramadi, Assistant Professor of Bioengineering at NYU Tandon School of Engineering, revealed that he and a team of collaborators at MIT and Caltech have developed a tiny pill-like electromagnetic device that, once swallowed, could provide medical professionals a diagnostic window into the inner workings of the gastrointestinal (GI) tract.

The bluetooth-enabled device delivers a continual stream of data to a smartphone as it passes through the subject, using electromagnetic technology similar to what makes Magnetic Resonance Imaging (MRI) machines work.

This breakthrough means that the more than one-third of the global population with irritable bowel syndrome and other disorders related to motility - the functioning of muscles and nerves in the GI tract - could avoid standard diagnostic procedures like computerized tomography (CT) scans, X-rays or endoscopic tubes inserted through the nose or other entry point. Those procedures can be physically and mentally uncomfortable, rely on potentially harmful radiation, and demand patients spend considerable time inside medical facilities.

Instead, the ingestible radiation-free microdevice would require only that people keep close to electromagnetic coils as the device makes its way through their bodies. The coils could be worn in a backpack or jacket, so patients could go about their normal lives during the process.

"We anticipate that our ingestible microdevice may keep people out of hospitals and reduce burdens on the healthcare system, while delivering information vital to diagnose motility disorders as accurately as possible," said Ramadi, who heads the Laboratory for Advanced Neuroengineering and Translational Medicine at NYU Abu Dhabi.

Ramadi and his colleagues spent three years developing the device, which required creating a system of electromagnets that could function with high-resolution throughout the one-to-two foot range of the human abdomen, and not degrade in the GI tract. In the Nature Electronics paper, they announced their successful trial on pigs, suggesting the likelihood of similar results in human trials necessary for the device’s eventual real-world availability.

"Motility disorders and diseases involve the GI tract moving at abnormal speeds, including by working too quickly or slowly in specific places, but those things can be frustratingly difficult to measure," said Ramadi. "Current ingestible trackers tell us conditions like temperature inside the body, or capture images, but don’t directly indicate their location. Once our highly-sensitive device is swallowed it also shows us exactly where it is at any time. That gives us a timeline of the tract's movement and exposes the precise place of the malfunction, information critical to identifying the underlying disease."

This new study adds to Ramadi's track record in pioneering novel ingestibles that can diagnose and treat medical conditions. Previously, he announced that his team created an ingestible device that uses electrical signals to modulate brain activity via the gut, a development that could lead to treating a range of diseases, from Alzheimer's to diabetes, without medications - and their attendant side effects - or surgery.

Ramadi's work also exemplifies Tandon's commitment to groundbreaking research that improves healthcare, one of the School's areas of excellence. Among many other contributions to the field, Tandon researchers have recently created smartwatch-like devices that can help wearers manage their mental states; retina scanning that can predict stroke reoccurance; technology to help track the development of breast cancer; and models to assess the accuracy of mortality predictions when applied to different geographies.

Sharma, S., Ramadi, K.B., Poole, N.H. et al.
Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics.
Nat Electron. 2023. doi: 10.1038/s41928-023-00916-0

Most Popular Now

AI in Personalized Cancer Medicine: New …

The application of AI in precision oncology has so far been largely confined to the development of new drugs and had only limited impact on the personalisation of therapies. New...

AI can Predict Brain Cancer Patients…

Artificial Intelligence (AI) can predict whether adult patients with brain cancer will survive more than eight months after receiving radiotherapy treatment. The use of the AI to successfully predict patient outcomes...

Max Planck Institute for Informatics and…

The Max Planck Institute for Informatics and Google deepen their strategic research partnership. With additional financial support from the U.S. IT company, the "Saarbrücken Research Center for Visual Computing, Interaction...

JMIR Medical Informatics Invites Submiss…

JMIR Publications has announced a new section titled, "AI Language Models in Health Care" in JMIR Medical Informatics. This leading peer-reviewed journal is indexed in PubMed and has a unique...

Paper Calls for Patient-First Regulation…

Ever wonder if the latest and greatest artificial intelligence (AI) tool you read about in the morning paper is going to save your life? A new study published in JAMA...

Could ChatGPT Help or Hurt Scientific Re…

Since its introduction to the public in November 2022, ChatGPT, an artificial intelligence system, has substantially grown in use, creating written stories, graphics, art and more with just a short...

Evaluating the Performance of AI-Based L…

A new study evaluates an artificial intelligence (AI)-based algorithm for autocontouring prior to radiotherapy in head and neck cancer. Manual contouring to pinpoint the area of treatment requires significant time...

Making AI a Partner in Neuroscientific D…

The past year has seen major advances in Large Language Models (LLMs) such as ChatGPT. The ability of these models to interpret and produce human text sources (and other sequence...

Chapman Scientists Code ChatGPT to Desig…

Generative artificial intelligence platforms, from ChatGPT to Midjourney, grabbed headlines in 2023. But GenAI can do more than create collaged images and help write emails - it can also design...

DMEA nova Award: Wanted - Visionary Solu…

9 - 11 April 2024, Berlin, Germany. The DMEA nova Award is being presented at DMEA 2024 for the first time. The award honours a digital health startup for an outstanding...

New Digital Therapy Reduces Anxiety and …

A therapist-guided digital cognitive behavioural therapy reduced distress in 89 per cent of participants living with long-term physical health conditions, a new King's College London study finds. Researchers at the Institute...

Europe's Digital Health Industry Me…

9 - 11 April 2024, Berlin, Germany. In just over two months, from 9 to 11 April 2024, DMEA, Europe's leading event for digitalisation of healthcare, will gather digital health experts...