What's Your Gut Telling You?

Millions of people suffer from these painfully common conditions, and often endure inconvenient and invasive medical procedures to diagnose the causes.

In a study published in Nature Electronics, Khalil B. Ramadi, Assistant Professor of Bioengineering at NYU Tandon School of Engineering, revealed that he and a team of collaborators at MIT and Caltech have developed a tiny pill-like electromagnetic device that, once swallowed, could provide medical professionals a diagnostic window into the inner workings of the gastrointestinal (GI) tract.

The bluetooth-enabled device delivers a continual stream of data to a smartphone as it passes through the subject, using electromagnetic technology similar to what makes Magnetic Resonance Imaging (MRI) machines work.

This breakthrough means that the more than one-third of the global population with irritable bowel syndrome and other disorders related to motility - the functioning of muscles and nerves in the GI tract - could avoid standard diagnostic procedures like computerized tomography (CT) scans, X-rays or endoscopic tubes inserted through the nose or other entry point. Those procedures can be physically and mentally uncomfortable, rely on potentially harmful radiation, and demand patients spend considerable time inside medical facilities.

Instead, the ingestible radiation-free microdevice would require only that people keep close to electromagnetic coils as the device makes its way through their bodies. The coils could be worn in a backpack or jacket, so patients could go about their normal lives during the process.

"We anticipate that our ingestible microdevice may keep people out of hospitals and reduce burdens on the healthcare system, while delivering information vital to diagnose motility disorders as accurately as possible," said Ramadi, who heads the Laboratory for Advanced Neuroengineering and Translational Medicine at NYU Abu Dhabi.

Ramadi and his colleagues spent three years developing the device, which required creating a system of electromagnets that could function with high-resolution throughout the one-to-two foot range of the human abdomen, and not degrade in the GI tract. In the Nature Electronics paper, they announced their successful trial on pigs, suggesting the likelihood of similar results in human trials necessary for the device’s eventual real-world availability.

"Motility disorders and diseases involve the GI tract moving at abnormal speeds, including by working too quickly or slowly in specific places, but those things can be frustratingly difficult to measure," said Ramadi. "Current ingestible trackers tell us conditions like temperature inside the body, or capture images, but don’t directly indicate their location. Once our highly-sensitive device is swallowed it also shows us exactly where it is at any time. That gives us a timeline of the tract's movement and exposes the precise place of the malfunction, information critical to identifying the underlying disease."

This new study adds to Ramadi's track record in pioneering novel ingestibles that can diagnose and treat medical conditions. Previously, he announced that his team created an ingestible device that uses electrical signals to modulate brain activity via the gut, a development that could lead to treating a range of diseases, from Alzheimer's to diabetes, without medications - and their attendant side effects - or surgery.

Ramadi's work also exemplifies Tandon's commitment to groundbreaking research that improves healthcare, one of the School's areas of excellence. Among many other contributions to the field, Tandon researchers have recently created smartwatch-like devices that can help wearers manage their mental states; retina scanning that can predict stroke reoccurance; technology to help track the development of breast cancer; and models to assess the accuracy of mortality predictions when applied to different geographies.

Sharma, S., Ramadi, K.B., Poole, N.H. et al.
Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics.
Nat Electron. 2023. doi: 10.1038/s41928-023-00916-0

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...