What's Your Gut Telling You?

Millions of people suffer from these painfully common conditions, and often endure inconvenient and invasive medical procedures to diagnose the causes.

In a study published in Nature Electronics, Khalil B. Ramadi, Assistant Professor of Bioengineering at NYU Tandon School of Engineering, revealed that he and a team of collaborators at MIT and Caltech have developed a tiny pill-like electromagnetic device that, once swallowed, could provide medical professionals a diagnostic window into the inner workings of the gastrointestinal (GI) tract.

The bluetooth-enabled device delivers a continual stream of data to a smartphone as it passes through the subject, using electromagnetic technology similar to what makes Magnetic Resonance Imaging (MRI) machines work.

This breakthrough means that the more than one-third of the global population with irritable bowel syndrome and other disorders related to motility - the functioning of muscles and nerves in the GI tract - could avoid standard diagnostic procedures like computerized tomography (CT) scans, X-rays or endoscopic tubes inserted through the nose or other entry point. Those procedures can be physically and mentally uncomfortable, rely on potentially harmful radiation, and demand patients spend considerable time inside medical facilities.

Instead, the ingestible radiation-free microdevice would require only that people keep close to electromagnetic coils as the device makes its way through their bodies. The coils could be worn in a backpack or jacket, so patients could go about their normal lives during the process.

"We anticipate that our ingestible microdevice may keep people out of hospitals and reduce burdens on the healthcare system, while delivering information vital to diagnose motility disorders as accurately as possible," said Ramadi, who heads the Laboratory for Advanced Neuroengineering and Translational Medicine at NYU Abu Dhabi.

Ramadi and his colleagues spent three years developing the device, which required creating a system of electromagnets that could function with high-resolution throughout the one-to-two foot range of the human abdomen, and not degrade in the GI tract. In the Nature Electronics paper, they announced their successful trial on pigs, suggesting the likelihood of similar results in human trials necessary for the device’s eventual real-world availability.

"Motility disorders and diseases involve the GI tract moving at abnormal speeds, including by working too quickly or slowly in specific places, but those things can be frustratingly difficult to measure," said Ramadi. "Current ingestible trackers tell us conditions like temperature inside the body, or capture images, but don’t directly indicate their location. Once our highly-sensitive device is swallowed it also shows us exactly where it is at any time. That gives us a timeline of the tract's movement and exposes the precise place of the malfunction, information critical to identifying the underlying disease."

This new study adds to Ramadi's track record in pioneering novel ingestibles that can diagnose and treat medical conditions. Previously, he announced that his team created an ingestible device that uses electrical signals to modulate brain activity via the gut, a development that could lead to treating a range of diseases, from Alzheimer's to diabetes, without medications - and their attendant side effects - or surgery.

Ramadi's work also exemplifies Tandon's commitment to groundbreaking research that improves healthcare, one of the School's areas of excellence. Among many other contributions to the field, Tandon researchers have recently created smartwatch-like devices that can help wearers manage their mental states; retina scanning that can predict stroke reoccurance; technology to help track the development of breast cancer; and models to assess the accuracy of mortality predictions when applied to different geographies.

Sharma, S., Ramadi, K.B., Poole, N.H. et al.
Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics.
Nat Electron. 2023. doi: 10.1038/s41928-023-00916-0

Most Popular Now

Northern Lincolnshire and Goole NHS Foun…

Northern Lincolnshire and Goole NHS Foundation Trust (NLAG) has launched new NHS App features to transform the way patients access and manage their appointments within the NHS. The programme, known...

Genomics England Deploys Sectra Imaging …

Genomics England has completed installation of an enterprise imaging system that will help to support a world-pioneering initiative for cancer research. The programme is linking whole genome sequencing, pathology and...

Orion Health Strengthens French Business…

Orion Health is strengthening its presence in France with the appointment of digital health industry heavyweight, Tristan Debove, to lead its operations. Tristan Debove has more than 25 years of experience...

AI Approach may Help Detect Alzheimer's …

Although investigators have made strides in detecting signs of Alzheimer's disease using high-quality brain imaging tests collected as part of research studies, a team at Massachusetts General Hospital (MGH) recently...

AI Predicts Cancer Patient Survival by R…

A team of researchers from the University of British Columbia and BC Cancer have developed an artificial intelligence (AI) model that predicts cancer patient survival more accurately and with more...

Virtual Reality Games can be Used as a T…

Virtual reality gamers (VR game) who finished it faster than their fellow gamers also have higher levels of general intelligence and processing capacity. This was the result of a study...

Will Future Computers Run on Human Brain…

A "biocomputer" powered by human brain cells could be developed within our lifetime, according to Johns Hopkins University researchers who expect such technology to exponentially expand the capabilities of modern...

Detecting Anaemia Earlier in Children Us…

Researchers at UCL and University of Ghana have successfully predicted whether children have anaemia using only a set of smartphone images. The study, published in PLOS ONE, brought together researchers and...

AI can Help Optimize CT Scan X-Ray Radia…

Computed tomography (CT) is one of the most powerful and well-established diagnostic tools available to modern medicine. An increasing number of people have been opting for CT scans, raising concerns...

Study Reveals Smartphone Spyware Apps ar…

Smartphone spyware apps that allow people to spy on each other are not only hard to notice and detect, they also will easily leak the sensitive personal information they...

Orion Health Appoints Mark Hindle as Vic…

Orion Health has appointed Mark Hindle as its new vice president for the UK and Ireland. Mark has joined the leading supplier of digital tools to improve healthcare experience from...