'AI Scientist' Suggests Combinations of Widely Available Non-Cancer Drugs can Kill Cancer Cells

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence - could also be effective at treating cancer, a promising new approach to drug discovery.

The research team, led by the University of Cambridge, used the GPT-4 large language model (LLM) to identify hidden patterns buried in the mountains of scientific literature to identify potential new cancer drugs.

To test their approach, the researchers prompted GPT-4 to identify potential new drug combinations that could have a significant impact on a breast cancer cell line commonly used in medical research. They instructed it to avoid standard cancer drugs, identify drugs that would attack cancer cells while not harming healthy cells, and prioritise drugs that were affordable and approved by regulators.

The drug combinations suggested by GPT-4 were then tested by human scientists, both in combination and individually, to measure their effectiveness against breast cancer cells.

In the first lab-based test, three of the 12 drug combinations suggested by GPT-4 worked better than current breast cancer drugs. The LLM then learned from these tests and suggested a further four combinations, three of which also showed promising results.

The results, reported in the Journal of the Royal Society Interface, represent the first instance of a closed-loop system where experimental results guided an LLM, and LLM outputs – interpreted by human scientists – guided further experiments. The researchers say that tools such as LLMs are not replacement for scientists, but could instead be supervised AI researchers, with the ability to originate, adapt and accelerate discovery in areas like cancer research.

Often, LLMs such as GPT-4 return results that aren’t true, known as hallucinations. But in scientific research, hallucinations can sometimes be a benefit, if they lead to new ideas that are worth testing.

"Supervised LLMs offer a scalable, imaginative layer of scientific exploration, and can help us as human scientists explore new paths that we hadn’t thought of before," said Professor Ross King from Cambridge’s Department of Chemical Engineering and Biotechnology, who led the research. "This can be useful in areas such as drug discovery, where there are many thousands of compounds to search through."

Based on the prompts provided by the human scientists, GPT-4 selected drugs based on the interplay between biological reasoning and hidden patterns in the scientific literature.

"This is not automation replacing scientists, but a new kind of collaboration," said co-author Dr Hector Zenil from King's College London. "Guided by expert prompts and experimental feedback, the AI functioned like a tireless research partner - rapidly navigating an immense hypothesis space and proposing ideas that would take humans alone far longer to reach."

The hallucinations - normally viewed as flaws - became a feature, generating unconventional combinations worth testing and validating in the lab. The human scientists inspected the mechanistic reasons the LLM found to suggest these combinations in the first place, feeding the system back and forth in multiple iterations.

By exploring subtle synergies and overlooked pathways, GPT-4 helped identify six promising drug pairs, all tested through lab experiments. Among the combinations, simvastatin (commonly used to lower cholesterol) and disulfiram (used in alcohol dependence) stood out against breast cancer cells. Some of these combinations show potential for further research in therapeutic repurposing.

These drugs, while not traditionally associated with cancer care, could be potential cancer treatments, although they would first have to go through extensive clinical trials.

"This study demonstrates how AI can be woven directly into the iterative loop of scientific discovery, enabling adaptive, data-informed hypothesis generation and validation in real time," said Zenil.

"The capacity of supervised LLMs to propose hypotheses across disciplines, incorporate prior results, and collaborate across iterations marks a new frontier in scientific research," said King. "An AI scientist is no longer a metaphor without experimental validation: it can now be a collaborator in the scientific process."

The research was supported in part by the Alice Wallenberg Foundation and the UK Engineering and Physical Sciences Research Council (EPSRC).

Abdel-Rehim A, Zenil H, Orhobor O, Fisher M, Collins RJ, Bourne E, Fearnley GW, Tate E, Smith HX, Soldatova LN, King R.
Scientific hypothesis generation by large language models: laboratory validation in breast cancer treatment.
J R Soc Interface. 2025 Jun;22(227):20240674. doi: 10.1098/rsif.2024.0674

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...