'AI Scientist' Suggests Combinations of Widely Available Non-Cancer Drugs can Kill Cancer Cells

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence - could also be effective at treating cancer, a promising new approach to drug discovery.

The research team, led by the University of Cambridge, used the GPT-4 large language model (LLM) to identify hidden patterns buried in the mountains of scientific literature to identify potential new cancer drugs.

To test their approach, the researchers prompted GPT-4 to identify potential new drug combinations that could have a significant impact on a breast cancer cell line commonly used in medical research. They instructed it to avoid standard cancer drugs, identify drugs that would attack cancer cells while not harming healthy cells, and prioritise drugs that were affordable and approved by regulators.

The drug combinations suggested by GPT-4 were then tested by human scientists, both in combination and individually, to measure their effectiveness against breast cancer cells.

In the first lab-based test, three of the 12 drug combinations suggested by GPT-4 worked better than current breast cancer drugs. The LLM then learned from these tests and suggested a further four combinations, three of which also showed promising results.

The results, reported in the Journal of the Royal Society Interface, represent the first instance of a closed-loop system where experimental results guided an LLM, and LLM outputs – interpreted by human scientists – guided further experiments. The researchers say that tools such as LLMs are not replacement for scientists, but could instead be supervised AI researchers, with the ability to originate, adapt and accelerate discovery in areas like cancer research.

Often, LLMs such as GPT-4 return results that aren’t true, known as hallucinations. But in scientific research, hallucinations can sometimes be a benefit, if they lead to new ideas that are worth testing.

"Supervised LLMs offer a scalable, imaginative layer of scientific exploration, and can help us as human scientists explore new paths that we hadn’t thought of before," said Professor Ross King from Cambridge’s Department of Chemical Engineering and Biotechnology, who led the research. "This can be useful in areas such as drug discovery, where there are many thousands of compounds to search through."

Based on the prompts provided by the human scientists, GPT-4 selected drugs based on the interplay between biological reasoning and hidden patterns in the scientific literature.

"This is not automation replacing scientists, but a new kind of collaboration," said co-author Dr Hector Zenil from King's College London. "Guided by expert prompts and experimental feedback, the AI functioned like a tireless research partner - rapidly navigating an immense hypothesis space and proposing ideas that would take humans alone far longer to reach."

The hallucinations - normally viewed as flaws - became a feature, generating unconventional combinations worth testing and validating in the lab. The human scientists inspected the mechanistic reasons the LLM found to suggest these combinations in the first place, feeding the system back and forth in multiple iterations.

By exploring subtle synergies and overlooked pathways, GPT-4 helped identify six promising drug pairs, all tested through lab experiments. Among the combinations, simvastatin (commonly used to lower cholesterol) and disulfiram (used in alcohol dependence) stood out against breast cancer cells. Some of these combinations show potential for further research in therapeutic repurposing.

These drugs, while not traditionally associated with cancer care, could be potential cancer treatments, although they would first have to go through extensive clinical trials.

"This study demonstrates how AI can be woven directly into the iterative loop of scientific discovery, enabling adaptive, data-informed hypothesis generation and validation in real time," said Zenil.

"The capacity of supervised LLMs to propose hypotheses across disciplines, incorporate prior results, and collaborate across iterations marks a new frontier in scientific research," said King. "An AI scientist is no longer a metaphor without experimental validation: it can now be a collaborator in the scientific process."

The research was supported in part by the Alice Wallenberg Foundation and the UK Engineering and Physical Sciences Research Council (EPSRC).

Abdel-Rehim A, Zenil H, Orhobor O, Fisher M, Collins RJ, Bourne E, Fearnley GW, Tate E, Smith HX, Soldatova LN, King R.
Scientific hypothesis generation by large language models: laboratory validation in breast cancer treatment.
J R Soc Interface. 2025 Jun;22(227):20240674. doi: 10.1098/rsif.2024.0674

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

NHS National Rehabilitation Centre to De…

The new NHS National Rehabilitation Centre will deploy technology to help patients to maintain their independence as they recover from life-changing injuries and illnesses and regain quality of life. Airwave Healthcare...

AI Tool Accurately Detects Tumor Locatio…

An AI model trained to detect abnormalities on breast MR images accurately depicted tumor locations and outperformed benchmark models when tested in three different groups, according to a study published...

AI can Accelerate Search for More Effect…

Scientists have used an AI model to reassess the results of a completed clinical trial for an Alzheimer’s disease drug. They found the drug slowed cognitive decline by 46% in...

AI Accurately Classifies Pancreatic Cyst…

Artificial intelligence (AI) models such as ChatGPT are designed to rapidly process data. Using the AI ChatGPT-4 platform to extract and analyze specific data points from the Magnetic Resonance Imaging...

Free AI Tools can Help Doctors Read Medi…

A new study from the University of Colorado Anschutz Medical Campus shows that free, open-source artificial intelligence (AI) tools can help doctors report medical scans just as well as more...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Autonomous AI Agents in Healthcare

The use of large language models (LLMs) and other forms of generative AI (GenAI) in healthcare has surged in recent years, and many of these technologies are already applied in...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...