Sussex Researchers use AI to Personalise Cancer Patient Treatments

Researchers at the University of Sussex are using Artificial Intelligence (AI) technology to analyse different types of cancer cells to understand different gene dependencies, and to identify genes that are critical to a cell's survival. Sussex researchers have done this by developing a prediction algorithm that works out which genes are essential in the cell, by analysing the genetic changes in the tumour. This can be used to identify actionable targets that in time could guide oncologists to personalise cancer patient treatments

Dr Frances Pearl, Senior Lecturer in Bioinformatics in the School of Life Sciences at the University of Sussex says: "Our vision is to take advantage of the decreasing cost of DNA sequencing and to harness the power of AI to understand cancer cell differences and what they mean for the individual patient’s treatment. Through our research, we were able to identify cell-specific gene dependencies using only the DNA sequence and RNA levels in that cell, which are easily and cheaply obtainable from tumour biopsy samples.

"This is an incredibly exciting step in our research which means that we can now work to improve the technology so that it can be offered to oncologists and help in the treatment pathways for their patients."

Cancer treatments are primarily prescribed on the basis of the location and type of cancer. Genetic differences in tumours can make standard cancer treatments ineffective. Using a personalised approach to guide treatment could improve life expectancy, quality of life and reduce unnecessary side effects of cancer patients.

In each cell, there are around 20,000 genes that contain the information needed to make proteins. Around 1,000 of those genes are essential, meaning they are required for the cell to survive. When normal cells become cancer cells, oncogenes (that is, those genes with the potential to cause cancer) become activated and tumour suppressor genes become inactivated, causing a rewiring of the cell. This causes the cell to become dependent on a new set of genes to survive, and this can then be exploited to kill the cancer cells.

By using this new technology to target protein products of tumour-specific dependent genes, cancer cells can be killed, leaving the normal cells which are not dependent on these genes relatively unharmed. Although dependencies can be determined using intensive laboratory techniques, it is costly and time consuming and would not be feasible to analyse all tumour samples in this way.

Benstead-Hume G, Wooller SK, Renaut J, Dias S, Woodbine L, Carr AM, Pearl FMG.
Biological network topology features predict gene dependencies in cancer cell-lines.
Bioinform Adv. 2022 Nov 10;2(1):vbac084. doi: 10.1093/bioadv/vbac084

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...