AI Aids Discovery of Super Tight-Binding Antibodies

Scientists at University of California San Diego School of Medicine have developed an artificial intelligence (AI)-based strategy for discovering high-affinity antibody drugs.

In the study, published January 28, 2023 in Nature Communications, researchers used the approach to identify a new antibody that binds a major cancer target 17-fold tighter than an existing antibody drug. The authors say the pipeline could accelerate the discovery of novel drugs against cancer and other diseases such as COVID-19 and rheumatoid arthritis.

In order to be a successful drug, an antibody has to bind tightly to its target. To find such antibodies, researchers typically start with a known antibody amino acid sequence and use bacterial or yeast cells to produce a series of new antibodies with variations of that sequence. These mutants are then evaluated for their ability to bind the target antigen. The subset of antibodies that work best are then subjected to another round of mutations and evaluations, and this cycle repeats until a set of tightly-binding finalists emerges.

Despite this long and expensive process, many of the resulting antibodies still fail to be effective in clinical trials. In the new study, UC San Diego scientists designed a state-of-the-art machine learning algorithm to accelerate and streamline these efforts.

The approach starts similarly, with researchers generating an initial library of about half a million possible antibody sequences and screening them for their affinity to a specific protein target. But instead of repeating this process over and over again, they feed the dataset into a Bayesian neural network which can analyze the information and use it to predict the binding affinity of other sequences.

"With our machine learning tools, these subsequent rounds of sequence mutation and selection can be carried out quickly and efficiently on a computer rather than in the lab," said senior author Wei Wang, PhD, professor of Cellular and Molecular Medicine at UC San Diego School of Medicine.

One particular advantage of their AI model is its ability to report the certainty of each prediction. "Unlike a lot of AI methods, our model can actually tell us how confident it is in each of its predictions, which helps us rank the antibodies and decide which ones to prioritize in drug development," said Wang.

To validate the pipeline, project scientists and co-first authors of the study Jonathan Parkinson, PhD, and Ryan Hard, PhD, set out to design an antibody against programmed death ligand 1 (PD-L1), a protein highly expressed in cancer and the target of several commercially available anti-cancer drugs. Using this approach, they identified a novel antibody that bound to PD-L1 17 times better than atezolizumab (brand name Tecentriq), the wild-type antibody approved for clinical use by the U.S. Food and Drug Administration.

The researchers are now using this approach to identify promising antibodies against other antigens, such as SARS-CoV-2. They are also developing additional AI models that analyze amino acid sequences for other antibody properties important for clinical trial success, such as stability, solubility and selectivity.

"By combining these AI tools, scientists may be able to perform an increasing share of their antibody discovery efforts on a computer instead of at the bench, potentially leading to a faster and less failure-prone discovery process," said Wang. "There are so many applications to this pipeline, and these findings are really just the beginning."

Parkinson J, Hard R, Wang W.
The RESP AI model accelerates the identification of tight-binding antibodies.
Nat Commun. 2023 Jan 28;14(1):454. doi: 10.1038/s41467-023-36028-8

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...