AI can Help Patients Interpret Home Tests for COVID-19

New machine learning research led by Professor Farrokh Alemi and Professor Janusz Wojtusiak provides a way for patients and clinicians to better predict whether symptoms are due to COVID-19, influenza, or RSV. A more accurate diagnosis leads to better decisions on course of care to heal patients and prevent the disease from spreading. With fellow George Mason University researchers and Vibrent Health, Alemi and Wojtusiak recently published a series of articles in a special edition of the Journal of Quality Management in Healthcare discussing how artificial intelligence (AI) can help in the diagnosis of COVID from a combination of symptoms and home tests.

With their research, Alemi and Wojtusiak are now working on a website to deliver an AI-based resource to assist individuals in identifying recommended actions as a result of their clinical profile and COVID at-home test results.

"We see AI working to radically improve clinical triage and test-to-treat decisions," said Wojtusiak. Alemi added, "AI will allow individuals to feel more confident about their decisions to stay home, seek care, or to socially isolate. Lots of people test at end of their symptoms and surprisingly they find they are still positive. What does one do if symptoms and home test results do not agree? Our AI will help these individuals understand how to proceed."

The study in paper 1 (as listed below) found that the timing of symptoms matters in a COVID diagnosis. For example, a runny nose as an early symptom increased the odds of testing positive for COVID, and a runny nose as a symptom that occurred later decreased the odds. Similarly, fever is almost always a late symptom, so lack of fever early on should not be used to rule out COVID.

The results in paper 2 found that COVID cannot be diagnosed from individual symptoms; however, a cluster of three or more symptoms can aid in diagnosis. Findings from paper 4 found the accuracy of diagnosing COVID symptoms was highest when symptoms from different body symptoms were present. For example, a combination of neurological and common respiratory symptoms was more diagnostic than either one of the sets of symptoms individually. In addition, COVID has different presentations depending on age, severity of illness, and virus mutations.

Paper 3 discusses how an AI symptom screening could improve, and for vaccinated individuals replace, at-home antigen tests. At-home tests are not always accurate and require clinical review, but these tests are done at home where no such review is available. AI symptom screening can help make these tests more accurate. The study reports that AI symptom screening is more accurate than taking a second home test.

The four papers published in the special supplement are:

A fifth paper, titled Modeling the Probability of COVID-19 Based on Symptom Screening and Prevalence of Influenza and Influenza-Like Illnesses, from same group of researchers was also published in the Journal of Quality Management in Healthcare in April/June 2022.

Alemi was Mason’s principal investigator. Mason was a subcontractor to Vibrent Health, where Praduman Jain was the principal investigator of the project. (Jain is a member of Mason’s College of Public Health advisory board.) Other Mason-affiliated researchers on these projects include Associate Professor Amira Roess, affiliate faculty member Jee Vang, doctoral student Elina Guralnik, former student and adjunct faculty Wejdan Bagais. Rachele Peterson and Josh Schilling from Vibrent Health and F. Gerard Moeller from Virginia Commonwealth University were also part of the research team.

The research was funded by the program called “Digital Health Solutions for COVID-19” launched by the National Cancer Institute (NCI) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB).

The methods used in these five papers vary. In paper 4, researchers conducted a meta-analysis of the literature, using data from published papers. In the other papers, researchers surveyed patients who took a PCR test and examined the relationship between the patients’ symptoms and PCR test results. Most research was done using data collected between October 2020 and January 2021, prior to the current variants such as BA.5 or BQ.1.

Previous, related publications by these investigators include a study examining how computers can distinguish between COVID-19 and flu and an analysis of symptomatic university students and social distancing.

Alemi F, Vang J, Bagais WH, Guralnik E, Wojtusiak J, Moeller FG, Schilling J, Peterson R, Roess A, Jain P.
Combined Symptom Screening and At-Home Tests for COVID-19.
Qual Manag Health Care. 2023 Jan-Mar 01;32(Suppl 1):S11-S20. doi: 10.1097/QMH.0000000000000404

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

AI-Based App can Help Physicians Find Sk…

A mobile app that uses artificial intelligence, AI, to analyse images of suspected skin lesions can diagnose melanoma with very high precision. This is shown in a study led from...

Powerful New AI can Predict People'…

A powerful new tool in artificial intelligence is able to predict whether someone is willing to be vaccinated against COVID-19. The predictive system uses a small set of data from demographics...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...