AI can Help Patients Interpret Home Tests for COVID-19

New machine learning research led by Professor Farrokh Alemi and Professor Janusz Wojtusiak provides a way for patients and clinicians to better predict whether symptoms are due to COVID-19, influenza, or RSV. A more accurate diagnosis leads to better decisions on course of care to heal patients and prevent the disease from spreading. With fellow George Mason University researchers and Vibrent Health, Alemi and Wojtusiak recently published a series of articles in a special edition of the Journal of Quality Management in Healthcare discussing how artificial intelligence (AI) can help in the diagnosis of COVID from a combination of symptoms and home tests.

With their research, Alemi and Wojtusiak are now working on a website to deliver an AI-based resource to assist individuals in identifying recommended actions as a result of their clinical profile and COVID at-home test results.

"We see AI working to radically improve clinical triage and test-to-treat decisions," said Wojtusiak. Alemi added, "AI will allow individuals to feel more confident about their decisions to stay home, seek care, or to socially isolate. Lots of people test at end of their symptoms and surprisingly they find they are still positive. What does one do if symptoms and home test results do not agree? Our AI will help these individuals understand how to proceed."

The study in paper 1 (as listed below) found that the timing of symptoms matters in a COVID diagnosis. For example, a runny nose as an early symptom increased the odds of testing positive for COVID, and a runny nose as a symptom that occurred later decreased the odds. Similarly, fever is almost always a late symptom, so lack of fever early on should not be used to rule out COVID.

The results in paper 2 found that COVID cannot be diagnosed from individual symptoms; however, a cluster of three or more symptoms can aid in diagnosis. Findings from paper 4 found the accuracy of diagnosing COVID symptoms was highest when symptoms from different body symptoms were present. For example, a combination of neurological and common respiratory symptoms was more diagnostic than either one of the sets of symptoms individually. In addition, COVID has different presentations depending on age, severity of illness, and virus mutations.

Paper 3 discusses how an AI symptom screening could improve, and for vaccinated individuals replace, at-home antigen tests. At-home tests are not always accurate and require clinical review, but these tests are done at home where no such review is available. AI symptom screening can help make these tests more accurate. The study reports that AI symptom screening is more accurate than taking a second home test.

The four papers published in the special supplement are:

A fifth paper, titled Modeling the Probability of COVID-19 Based on Symptom Screening and Prevalence of Influenza and Influenza-Like Illnesses, from same group of researchers was also published in the Journal of Quality Management in Healthcare in April/June 2022.

Alemi was Mason’s principal investigator. Mason was a subcontractor to Vibrent Health, where Praduman Jain was the principal investigator of the project. (Jain is a member of Mason’s College of Public Health advisory board.) Other Mason-affiliated researchers on these projects include Associate Professor Amira Roess, affiliate faculty member Jee Vang, doctoral student Elina Guralnik, former student and adjunct faculty Wejdan Bagais. Rachele Peterson and Josh Schilling from Vibrent Health and F. Gerard Moeller from Virginia Commonwealth University were also part of the research team.

The research was funded by the program called “Digital Health Solutions for COVID-19” launched by the National Cancer Institute (NCI) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB).

The methods used in these five papers vary. In paper 4, researchers conducted a meta-analysis of the literature, using data from published papers. In the other papers, researchers surveyed patients who took a PCR test and examined the relationship between the patients’ symptoms and PCR test results. Most research was done using data collected between October 2020 and January 2021, prior to the current variants such as BA.5 or BQ.1.

Previous, related publications by these investigators include a study examining how computers can distinguish between COVID-19 and flu and an analysis of symptomatic university students and social distancing.

Alemi F, Vang J, Bagais WH, Guralnik E, Wojtusiak J, Moeller FG, Schilling J, Peterson R, Roess A, Jain P.
Combined Symptom Screening and At-Home Tests for COVID-19.
Qual Manag Health Care. 2023 Jan-Mar 01;32(Suppl 1):S11-S20. doi: 10.1097/QMH.0000000000000404

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...