Biomedical Institutions Agree on a Set of Open Science Practices to Monitor

Eighty stakeholders from twenty major biomedical research institutions across the globe have agreed upon a list of 19 open science practices to be implemented and monitored. The study, led by Dr. Kelly Cobey, Scientist and Director of the Open Science and Meta Research Program at the University of Ottawa Heart Institute, Canada, forms the basis for the future development of institutional digital dashboards that will display that institution's compliance with open science practices. The study will publish in the open access journal PLOS Biology on January 24th.

Globally, mandates and guidelines relating to open science have grown in recent years. Open science practices including open access publishing, preprints, data sharing, and clinical trial registration help to ensure that research is as transparent, accessible, and useable. The COVID-19 pandemic has highlighted how the traditionally "closed" nature of biomedical research does not serve the global community. To transition to an "open" research ecosystem researchers require training and support. Despite a multitude of a calls and policies that aim to "open up" research, no system to monitor the state of practice at academic institutions currently exists. Monitoring is necessary to track progress over time, but also to identify areas where interventions are needed to change practice. The 19 core open science practices established in this article will help to standardize monitoring globally.

The study describes an iterative process through which stakeholders at institutions communicated to obtain consensus. A three-round Delphi study in which a group of stakeholders voted on potential open science practices to monitor was used. The first two rounds of the Delphi voting took place via electronic surveying, while the final round was completed over two days as a virtual meeting. Participants had the opportunity to comment and anonymously vote on potential practices, and to suggest novel practices to the group. This approach helped to standardize communication and reduce bias. The 19 practices will now be tested in terms of how feasible they are to automate for inclusion in an open source digital dashboard that will be developed for use at biomedical institutions.

"Having an agreed set of open science practices to monitor is an important milestone for the community. Through taking this community-centred approach we hope to develop and make available a tool for biomedical institutions to monitor open science practices," said Dr. Cobey, "Ultimately we need to track open science practices in order to ensure that we are taking timely steps to open up research and to ensure we comply with existing open science mandates."

Cobey adds, "Policy in the absence of monitoring is not effective. We have reached agreement on how to design a digital dashboard to track open science practices to determine if we are doing a good job implementing them or not."

Cobey KD, Haustein S, Brehaut J, Dirnagl U, Franzen DL, Hemkens LG, et al.
Community consensus on core open science practices to monitor in biomedicine. PLoS Biol 21(1): e3001949. 2023. doi: 10.1371/journal.pbio.3001949

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...