A Blood Test for Cancer Shows Promise Thanks to Machine Learning

A team of researchers at the University of Wisconsin­-Madison has successfully combined genomics with machine learning in the quest to develop accessible tests that allow earlier detection of cancer.

For many types of cancer, early detection can lead to better outcomes for patients. While scientists are developing new blood tests that analyze DNA to aid in earlier detection, these new technologies have limitations, including cost and sensitivity.

In a study published this week in Science Translational Medicine and led by Muhammed Murtaza, professor of surgery at the UW School of Medicine and Public Health, researchers used a machine-learning model to examine blood plasma for DNA fragments from cancer cells. The technique, which uses readily available lab materials, detected cancers at an early stage among most of the samples they studied.

"We're incredibly excited to discover that early detection and monitoring of multiple cancer types are potentially feasible using such a cost-effective approach," says Murtaza.

The approach hinges on analyzing fragments of cell-free DNA. Such fragments are commonly found in plasma, which is the liquid portion of blood. The fragments of genetic material typically come from blood cells that die as part of the body’s natural processes, but they can also be shed by cancer cells.

The research team hypothesized that DNA fragments from cancer cells might differ from healthy cell fragments in terms of where the DNA strands break, and what nucleotides - the building blocks of DNA - surround the breaking points.

Using a technique they've dubbed GALYFRE (from Genome-wide AnaLYsis of FRagment Ends), the team analyzed cell-free DNA from 521 samples and sequenced data from an additional 2,147 samples from healthy individuals and patients with 11 different cancer types.

From these analyses, they developed a measure reflecting the proportion of cancer-derived DNA molecules present in a sample. They called this information-weighted fraction of aberrant fragments.

They used this measure, along with information on the DNA sequences surrounding fragment breaking points, to develop a machine-learning model that would compare DNA fragments from healthy cells to those from different types of cancer cells.

The model accurately distinguished people with any stage of cancer from healthy individuals 91% of the time. In addition, the model accurately identified samples from patients with stage 1 cancer in 87% of cases, suggesting it holds promise for detecting cancer in early stages.

The information-weighted fraction of aberrant fragments method is "shown suitable to detect changes in tumor burden over time in confounding brain tumors like glioblastoma, which could also offer real-time efficacy assessment of ongoing treatment of this aggressive disease," says Michael Berens, professor at the Translational Genomics Research Institute’s Brain Tumor Unit and contributing author on the paper.

Murtaza says that while the current results are promising, more studies are needed to refine GALYFRE's use in different age groups and in patients who have additional medical conditions. The team is also planning larger clinical studies to validate the test for specific cancer types such as pancreatic cancer and breast cancer.

"One direction we are taking is refining GALYFRE to make it even more accurate for some patients who are at risk of developing specific types of cancers. Another aspect we are working on is determining if our approach can be used to monitor treatment response in cancer patients who are receiving chemotherapy."

"My hope," Murtaza adds, "is that with additional development, this work will lead to a blood test for cancer detection and monitoring that will be available clinically in the next 2-5 years for at least some conditions, and ultimately be accessible for patients with limited healthcare resources in the U.S. and around the world."

Budhraja KK, McDonald BR, Stephens MD, Contente-Cuomo T, Markus H, Farooq M, Favaro PF, Connor S, Byron SA, Egan JB, Ernst B, McDaniel TK, Sekulic A, Tran NL, Prados MD, Borad MJ, Berens ME, Pockaj BA, LoRusso PM, Bryce A, Trent JM, Murtaza M.
Genome-wide analysis of aberrant position and sequence of plasma DNA fragment ends in patients with cancer.
Sci Transl Med. 2023 Jan 11;15(678):eabm6863. doi: 10.1126/scitranslmed.abm6863

Most Popular Now

Open Call HORIZON-JU-IHI-2022-03-05: Dig…

Mental health disorders represent an area of severe unmet public health need. This has been further negatively impacted by the COVID-19 pandemic, with a substantial increase in the number and...

The Future of Medicine is Data

At the 2023 Annual J.P. Morgan Healthcare Conference, Owkin Co-founder and CEO Thomas Clozel, MD will outline how data is the future of medicine - from the development of new...

Brain Area Necessary for Fluid Intellige…

A team led by UCL and UCLH researchers have mapped the parts of the brain that support our ability to solve problems without prior experience - otherwise known as fluid...

Study Surveys Landscape of Apps Built on…

A study led by Regenstrief Institute Research Scientist Titus K. Schleyer, DMD, PhD, is among the first to survey the current landscape of FHIR® apps, providing a snapshot of how...

New Computer Program 'Learns' to Identif…

Genetic mutations cause hundreds of unsolved and untreatable disorders. Among them, DNA mutations in a small percentage of cells, called mosaic mutations, are extremely difficult to detect because they exist...

Applications Open for SpinLab Accelerato…

The start-up accelerator supports entrepreneurial and innovative teams that want to grow sustainably and successfully scale their business model. With a strong hands-on mentality and a lot of passion, the...

Allscripts Announces Corporate Name Chan…

Allscripts Healthcare Solutions, Inc. announced that, effective January 1, 2023, it has changed its name to Veradigm Inc. (NASDAQ: MDRX). Allscripts had been transitioning its solutions to the Veradigm brand...

Bayer to Accelerate Drug Discovery with …

Bayer AG and Google Cloud today announced a collaboration to drive early drug discovery that will apply Google Cloud's Tensor Processing Units (TPUs), which are custom-developed accelerators designed to run...

220M€ Investment in Testing and Experime…

To make the EU the place where AI excellence thrives from the lab to the market, the European Union is setting up world-class Testing and Experimentation Facilities (TEFs) for AI. Together...

Artificial Nerve Cells - Almost Like Bio…

Researchers at Linköping University (LiU), Sweden, have created an artificial organic neuron that closely mimics the characteristics of biological nerve cells. This artificial neuron can stimulate natural nerves, making it...

AI Tool Developed to Predict Risk of Lun…

Lung cancer is the leading cause of cancer death in the United States and around the world. Low-dose chest computed tomography (LDCT) is recommended to screen people between 50 and...

For Shared Decision-Making, Telemedicine…

Telemedicine may be just as effective as in-person visits when it comes to shared decision-making and communication for patients undergoing a first-time surgery consultation, according to a study published as...