A Blood Test for Cancer Shows Promise Thanks to Machine Learning

A team of researchers at the University of Wisconsin­-Madison has successfully combined genomics with machine learning in the quest to develop accessible tests that allow earlier detection of cancer.

For many types of cancer, early detection can lead to better outcomes for patients. While scientists are developing new blood tests that analyze DNA to aid in earlier detection, these new technologies have limitations, including cost and sensitivity.

In a study published this week in Science Translational Medicine and led by Muhammed Murtaza, professor of surgery at the UW School of Medicine and Public Health, researchers used a machine-learning model to examine blood plasma for DNA fragments from cancer cells. The technique, which uses readily available lab materials, detected cancers at an early stage among most of the samples they studied.

"We're incredibly excited to discover that early detection and monitoring of multiple cancer types are potentially feasible using such a cost-effective approach," says Murtaza.

The approach hinges on analyzing fragments of cell-free DNA. Such fragments are commonly found in plasma, which is the liquid portion of blood. The fragments of genetic material typically come from blood cells that die as part of the body’s natural processes, but they can also be shed by cancer cells.

The research team hypothesized that DNA fragments from cancer cells might differ from healthy cell fragments in terms of where the DNA strands break, and what nucleotides - the building blocks of DNA - surround the breaking points.

Using a technique they've dubbed GALYFRE (from Genome-wide AnaLYsis of FRagment Ends), the team analyzed cell-free DNA from 521 samples and sequenced data from an additional 2,147 samples from healthy individuals and patients with 11 different cancer types.

From these analyses, they developed a measure reflecting the proportion of cancer-derived DNA molecules present in a sample. They called this information-weighted fraction of aberrant fragments.

They used this measure, along with information on the DNA sequences surrounding fragment breaking points, to develop a machine-learning model that would compare DNA fragments from healthy cells to those from different types of cancer cells.

The model accurately distinguished people with any stage of cancer from healthy individuals 91% of the time. In addition, the model accurately identified samples from patients with stage 1 cancer in 87% of cases, suggesting it holds promise for detecting cancer in early stages.

The information-weighted fraction of aberrant fragments method is "shown suitable to detect changes in tumor burden over time in confounding brain tumors like glioblastoma, which could also offer real-time efficacy assessment of ongoing treatment of this aggressive disease," says Michael Berens, professor at the Translational Genomics Research Institute’s Brain Tumor Unit and contributing author on the paper.

Murtaza says that while the current results are promising, more studies are needed to refine GALYFRE's use in different age groups and in patients who have additional medical conditions. The team is also planning larger clinical studies to validate the test for specific cancer types such as pancreatic cancer and breast cancer.

"One direction we are taking is refining GALYFRE to make it even more accurate for some patients who are at risk of developing specific types of cancers. Another aspect we are working on is determining if our approach can be used to monitor treatment response in cancer patients who are receiving chemotherapy."

"My hope," Murtaza adds, "is that with additional development, this work will lead to a blood test for cancer detection and monitoring that will be available clinically in the next 2-5 years for at least some conditions, and ultimately be accessible for patients with limited healthcare resources in the U.S. and around the world."

Budhraja KK, McDonald BR, Stephens MD, Contente-Cuomo T, Markus H, Farooq M, Favaro PF, Connor S, Byron SA, Egan JB, Ernst B, McDaniel TK, Sekulic A, Tran NL, Prados MD, Borad MJ, Berens ME, Pockaj BA, LoRusso PM, Bryce A, Trent JM, Murtaza M.
Genome-wide analysis of aberrant position and sequence of plasma DNA fragment ends in patients with cancer.
Sci Transl Med. 2023 Jan 11;15(678):eabm6863. doi: 10.1126/scitranslmed.abm6863

Most Popular Now

Qure.ai to Launch AI Playbook for Radiol…

Qure.ai, one of world's leading providers of AI for healthcare, will launch its artificial intelligence (AI) playbook for radiology at this year's European Congress of Radiology. Developed with its European...

Northern Lincolnshire and Goole NHS Foun…

Northern Lincolnshire and Goole NHS Foundation Trust (NLAG) has launched new NHS App features to transform the way patients access and manage their appointments within the NHS. The programme, known...

FDB (First Databank) Achieves ISO 13485:…

FDB (First Databank) announced that it has achieved ISO 13485:2016, the Quality Management System (QMS) for medical devices. This is a significant step for FDB, the UK's leading supplier of...

First Transient Electronic Bandage Speed…

Northwestern University researchers have developed a first-of-its-kind small, flexible, stretchable bandage that accelerates healing by delivering electrotherapy directly to the wound site. In an animal study, the new bandage healed diabetic...

Orion Health Strengthens French Business…

Orion Health is strengthening its presence in France with the appointment of digital health industry heavyweight, Tristan Debove, to lead its operations. Tristan Debove has more than 25 years of experience...

Genomics England Deploys Sectra Imaging …

Genomics England has completed installation of an enterprise imaging system that will help to support a world-pioneering initiative for cancer research. The programme is linking whole genome sequencing, pathology and...

AI Approach may Help Detect Alzheimer's …

Although investigators have made strides in detecting signs of Alzheimer's disease using high-quality brain imaging tests collected as part of research studies, a team at Massachusetts General Hospital (MGH) recently...

AI Predicts Cancer Patient Survival by R…

A team of researchers from the University of British Columbia and BC Cancer have developed an artificial intelligence (AI) model that predicts cancer patient survival more accurately and with more...

Will Future Computers Run on Human Brain…

A "biocomputer" powered by human brain cells could be developed within our lifetime, according to Johns Hopkins University researchers who expect such technology to exponentially expand the capabilities of modern...

Rewired 2023 Programme Explores the Futu…

14 - 15 March 2023, London, UK. Digital Health Rewired, the premier conference, exhibition and networking show for the UK digital health community, has published its 2023 programme showcasing the very...

Detecting Anaemia Earlier in Children Us…

Researchers at UCL and University of Ghana have successfully predicted whether children have anaemia using only a set of smartphone images. The study, published in PLOS ONE, brought together researchers and...

Virtual Reality Games can be Used as a T…

Virtual reality gamers (VR game) who finished it faster than their fellow gamers also have higher levels of general intelligence and processing capacity. This was the result of a study...