New Computer Program 'Learns' to Identify Mosaic Mutations that Cause Disease

Genetic mutations cause hundreds of unsolved and untreatable disorders. Among them, DNA mutations in a small percentage of cells, called mosaic mutations, are extremely difficult to detect because they exist in a tiny percentage of the cells.

Current DNA mutation software detectors, while scanning the 3 billion bases of the human genome, are not well suited to discern mosaic mutations hiding among normal DNA sequences. Often medical geneticists must review DNA sequences by eye to try to identify or confirm mosaic mutations - a time-consuming endeavor fraught with the possibility of error.

Writing in the January 2, 2023 issue of Nature Biotechnology, researchers from the University of California San Diego School of Medicine and Rady Children’s Institute for Genomic Medicine describe a method for teaching a computer how to spot mosaic mutations using an artificial intelligence approach termed "deep learning."

Deep learning, sometimes referred to as artificial neural networks, is a machine learning technique that teaches computers to do what comes naturally to humans: learn by example, especially from large amounts of information. Compared with traditional statistical models, deep learning models use artificial neural networks to process visually represented data. The models function in ways similar to human visual processing, with much greater accuracy and attention to detail, leading to major advances in computational abilities, including mutation detection.

"One example of an unsolved disorder is focal epilepsy," said senior study author Joseph Gleeson, MD, Rady Professor of Neuroscience at UC San Diego School of Medicine and director of neuroscience research at the Rady Children's Institute for Genomic Medicine.

"Epilepsy affects 4% of the population, and about one-quarter of focal seizures fail to respond to common medication. These patients often require surgical excision of the short-circuited focal part of the brain to stop seizures. Among these patients, mosaic mutations within the brain can cause epileptic focus.

"We have had many epilepsy patients where we were not able to spot the cause, but once we applied our method, called 'DeepMosaic,' to the genomic data, the mutation became obvious. This has allowed us to improve the sensitivity of DNA sequencing in certain forms of epilepsy, and had led to discoveries that point to new ways to treat brain disease."

Gleeson said accurate detection of mosaic mutations is the first step in medical research toward developing treatments for many diseases.

Co-first and co-corresponding author Xiaoxu Yang, Ph.D., a postdoctoral scholar in Gleeson's lab, said DeepMosaic was trained on almost 200,000 simulated and biological variants across the genome until, "finally, we were satisfied with its ability to detect variants from data it had never encountered before."

To train the computer, the authors fed examples of trustworthy mosaic mutations as well as many normal DNA sequences and taught the computer to tell the difference. By repeatedly training and retraining with ever-more complex datasets and selection between a dozen of models, the computer was eventually able to identify mosaic mutations much better than human eyes and prior methods. DeepMosaic was also tested on several independent large-scale sequencing datasets that it had never seen, outperforming prior approaches.

"DeepMosaic surpassed traditional tools in detecting mosaicism from genomic and exonic sequences," said co-first author Xin Xu, a former undergraduate research assistant at UC San Diego School of Medicine and now a research data scientist at Novartis. "The prominent visual features picked up by the deep learning models are very similar to what experts are focusing on when manually examining variants."

DeepMosaic is freely available to scientists. It is not a single computer program, but rather an open-source platform that can enable other researchers to train their own neural networks to achieve a more targeted detection of mutations using a similar image-based setup, the researchers said.

Yang X, Xu X, Breuss MW, Antaki D, Ball LL, Chung C, Shen J, Li C, George RD, Wang Y, Bae T, Cheng Y, Abyzov A, Wei L, Alexandrov LB, Sebat JL; NIMH Brain Somatic Mosaicism Network; Gleeson JG.
Control-independent mosaic single nucleotide variant detection with DeepMosaic.
Nat Biotechnol. 2023 Jan 2. doi: 10.1038/s41587-022-01559-w

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...