Evaluating Use of New AI Technology in Diagnosing COVID-19

Published in the Journal of the American Medical Informatics Association, University of Minnesota researchers led a study evaluating federated learning variations for COVID-19 diagnosis in chest x-rays. Federated learning is an artificial intelligence (AI) technique that enables multiple parties to develop and train AI models collaboratively without the need to exchange or centralize data sets.

This research is a collaboration between the U of M, M Health Fairview, Emory University, Indiana University School of Medicine and University of Florida.

The research team compared the performance of a single site to a three-client federated model using a previously described COVID-19 diagnostic model. They found personalized federated learning may offer an opportunity to develop both internal and externally validated algorithms.

"Federated learning is an important future solution for AI in healthcare," Christopher Tignanelli, MD, MS, an associate professor at the University of Minnesota Medical School. "As all machine learning methods benefit greatly from the ability to access data that provides closer to a true global distribution, federated learning is a promising approach to obtain powerful, accurate, safe, robust and unbiased models."

Dr. Tignanelli co-led this study with Ju Sun, PhD, an assistant professor in the College of Science and Engineering. Both are leaders of the Program for Clinical AI in the Center for Learning Health System Sciences at the U of M Medical School.

"We're proud to be among the first teams implementing and further refining federated learning in real-world healthcare settings, with the strong support of industrial partners including Nvidia and Cisco," said Sun. "Data is the oil for modern AI, and federated learning makes the perfect oil refinery to advance AI for healthcare."

By enabling multiple parties to train collaboratively without the need to exchange or centralize data sets, the research team says federated learning helps protect sensitive medical data and may open new research and business avenues to improve patient care.

State-of-the-art algorithms are usually evaluated on carefully curated data sets originating from only a few sources, rather than truly representative data. This can introduce biases where demographics or technical imbalances skew predictions and adversely affect the accuracy for certain groups or sites. Researchers say to capture subtle relationships between disease patterns, socio-economic and genetic factors, and complex and rare cases, it is crucial to expose a model to diverse cases.

The research team says other potential benefits of federated learning include:

  • Improved medical image and text analysis;
  • Better diagnostic tools for clinicians;
  • Collaborative and accelerated drug discovery;
  • Decreased cost and time-to-market for pharmaceutical companies;
  • Rare disease cases where no single institution has enough cases to train models.

"We truly believe the potential impact on precision medicine and ultimately improving medical care is very promising," said Dr. Tignanelli.

Further research is suggested to address more technical questions in using this technology. Part of the funding for this research was provided by Cisco.

Le Peng, Gaoxiang Luo, Andrew Walker, Zachary Zaiman, Emma K Jones, Hemant Gupta, Kristopher Kersten, John L Burns, Christopher A Harle, Tanja Magoc, Benjamin Shickel, Scott D Steenburg, Tyler Loftus, Genevieve B Melton, Judy Wawira Gichoya, Ju Sun, Christopher J Tignanelli.
Evaluation of federated learning variations for COVID-19 diagnosis using chest radiographs from 42 US and European hospitals.
Journal of the American Medical Informatics Association, 2022. doi: 10.1093/jamia/ocac188

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...