Integrating Digital Twins and Deep Learning for Medical Image Analysis in the Era of COVID-19

Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and technologies. Digital twins may allow healthcare organizations to determine methods of improving medical processes, enhancing patient experience, lothis studyring operating expenses, and extending the value of care. During the present COVID-19 pandemic, various medical devices, such as X-rays and CT scan machines and processes, are constantly being used to collect and analyze medical images. When collecting and processing an extensive volume of data in the form of images, machines and processes sometimes suffer from system failures, creating critical issues for hospitals and patients.

To address this, this study introduce a digital-twin-based smart healthcare system integrated with medical devices to collect information regarding the current health condition, configuration, and maintenance history of the device/machine/system. Furthermore, medical images, that is, X-rays, are analyzed by using a deep-learning model to detect the infection of COVID-19. The designed system is based on the cascade recurrent convolution neural network (RCNN) architecture. In this architecture, the detector stages are deeper and more sequentially selective against small and close false positives. This architecture is a multi-stage extension of the RCNN model and sequentially trained using the output of one stage for training the other. At each stage, the bounding boxes are adjusted to locate a suitable value of the nearest false positives during the training of the different stages. In this manner, the arrangement of detectors is adjusted to increase the intersection over union, overcoming the problem of overfitting. This study train the model by using X-ray images as the model was previously trained on another dataset.

The developed system achieves good accuracy during the detection phase of COVID-19. The experimental outcomes reveal the efficiency of the detection architecture, which yields a mean average precision rate of 0.94.

Imran Ahmed, Misbah Ahmad, Gwanggil Jeon.
Integrating Digital Twins and Deep Learning for Medical Image Analysis in the era of COVID-19.
Virtual Reality & Intelligent Hardware, 2022. doi: 10.1016/j.vrih.2022.03.002

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...