AI Approach may Help Identify Melanoma Survivors who Face a High Risk of Cancer Recurrence

Most deaths from melanoma - the most lethal form of skin cancer - occur in patients who were initially diagnosed with early-stage melanoma and then later experienced a recurrence that is typically not detected until it has spread or metastasized.

A team led by investigators at Massachusetts General Hospital (MGH) recently developed an artificial intelligence - based method to predict which patients are most likely to experience a recurrence and are therefore expected to benefit from aggressive treatment. The method was validated in a study published in npj Precision Oncology.

Most patients with early-stage melanoma are treated with surgery to remove cancerous cells, but patients with more advanced cancer often receive immune checkpoint inhibitors, which effectively strengthen the immune response against tumor cells but also carry significant side effects.

"There is an urgent need to develop predictive tools to assist in the selection of high-risk patients for whom the benefits of immune checkpoint inhibitors would justify the high rate of morbid and potentially fatal immunologic adverse events observed with this therapeutic class," says senior author Yevgeniy R. Semenov, MD, an investigator in the Department of Dermatology at MGH.

"Reliable prediction of melanoma recurrence can enable more precise treatment selection for immunotherapy, reduce progression to metastatic disease and improve melanoma survival while minimizing exposure to treatment toxicities."

To help achieve this, Semenov and his colleagues assessed the effectiveness of algorithms based on machine learning, a branch of artificial intelligence, that used data from patient electronic health records to predict melanoma recurrence.

Specifically, the team collected 1,720 early-stage melanomas - 1,172 from the Mass General Brigham healthcare system (MGB) and 548 from the Dana-Farber Cancer Institute (DFCI) - and extracted 36 clinical and pathologic features of these cancers from electronic health records to predict patients' recurrence risk with machine learning algorithms. Algorithms were developed and validated with various MGB and DFCI patient sets, and tumor thickness and rate of cancer cell division were identified as the most predictive features.

"Our comprehensive risk prediction platform using novel machine learning approaches to determine the risk of early-stage melanoma recurrence reached high levels of classification and time to event prediction accuracy," says Semenov. "Our results suggest that machine learning algorithms can extract predictive signals from clinicopathologic features for early-stage melanoma recurrence prediction, which will enable the identification of patients who may benefit from adjuvant immunotherapy."

Wan, G., Nguyen, N., Liu, F. et al.
Prediction of early-stage melanoma recurrence using clinical and histopathologic features.
npj Precis. Onc. 6, 79, 2022. doi: 10.1038/s41698-022-00321-4

Most Popular Now

West Midlands to Digitally Transform Can…

NHS patients throughout the West Midlands are to benefit from a digital pathology programme, designed to help reduce cancer backlogs, transform services, and improve the speed and accuracy of cancer...

AI Approach may Help Identify Melanoma S…

Most deaths from melanoma - the most lethal form of skin cancer - occur in patients who were initially diagnosed with early-stage melanoma and then later experienced a recurrence that...

Siemens Healthineers and University of M…

Siemens Healthineers and UHealth - University of Miami Health System - announced a Value Partnership(1) agreement. This strategic relationship will further technological advancement and standardization of equipment at the health...

Siemens Healthineers Splits Fast-Growing…

Siemens Healthineers is splitting its Asia Pacific operations into two to allow both China and the rest of the region to achieve their full potential. China, now its own region...

Philips Advances MR Radiotherapy Imaging…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced two new advances in MR-only workflows to advance head and neck cancer radiotherapy imaging and simulation. The...

AI Transforms Smartwatch ECG Signals int…

A study published in Nature Medicine reports the ability of a smartwatch ECG to accurately detect heart failure in nonclinical environments. Researchers at Mayo Clinic applied artificial intelligence (AI) to...

3D Protein Structure Predictions Made by…

In a living being, proteins make up roughly everything: from the molecular machines running every cell's metabolism, to the tip of your hair. Encoded in the DNA, a protein may...

Siemens Healthineers Presents Two Revolu…

7 Tesla (T) Magnetom Terra.X(1) will offer excellent imaging of even the smallest structures 3T Magnetom Cima.X(2) more than doubles the gradient amplitude(3) AI algorithms which can reduce scanning...

Integrating Digital Twins and Deep Learn…

Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and technologies. Digital twins...

New Group to Advance Digital Twins in He…

EDITH (Ecosystem for Digital Twins in Healthcare) Coordination and Support Action (CSA) - a group made up of numerous internationally renowned research institutions, professional associations, companies, and hospitals of excellence...

Willingness to Use Video Telehealth Incr…

Americans' use and willingness to use video telehealth has increased since the beginning of the COVID-19 pandemic, rising most sharply among Black Americans and people with less education, according to...

DMEA Call for Papers: Supporting Digital…

25 - 27 April 2023, Berlin, Germany. Health meets digitalisation: from 25 to 27 April 2023 at DMEA - Connecting Digital Health, all actors aiming to promote health IT will be...