Can Smartphones Predict Mortality Risk?

Passive smartphone monitoring of people’s walking activity can be used to construct population-level models of health and mortality risk, according to a new study publishing October 20th in the open access journal PLOS Digital Health by Bruce Schatz of University of Illinois at Urbana-Champaign, USA, and colleagues.

Previous studies have used measures of physical fitness, including walk tests and self-reported walk pace, to predict individual mortality risk. These metrics focus on quality rather than quantity of movement; measuring an individual’s gait speed has become a standard practice for certain clinical settings, for example. The rise of passive smartphone activity monitoring opens the possibility for population-level analyses using similar metrics.

In the new study, researchers studied 100,000 participants in the UK Biobank national cohort who wore activity monitors with motion sensors for 1 week. While the wrist sensor is worn differently than how smartphone sensors are carried, their motion sensors can both be used to extract information on walking intensity from short bursts of walking - a daily living version of a walk test.

The team was able to successfully validate predictive models of mortality risk using only 6 minutes per day of steady walking collected by the sensor, combined with traditional demographic characteristics. The equivalent of gait speed calculated from this passively collected data was a predictor of 5-year mortality independent of age and sex (pooled C-index 0.72). The predictive models used only walking intensity to simulate smartphone monitors.

"Our results show passive measures with motion sensors can achieve similar accuracy to active measures of gait speed and walk pace," the authors say. "Our scalable methods offer a feasible pathway towards national screening for health risk."

Schatz adds, "I have spent a decade using cheap phones for clinical models of health status. These have now been tested on the largest national cohort to predict life expectancy at population scale."

Zhou H, Zhu R, Ung A, Schatz B.
Population analysis of mortality risk: Predictive models from passive monitors using motion sensors for 100,000 UK Biobank participants.
PLOS Digit Health 1(10): e0000045, 2022. doi: 10.1371/journal.pdig.0000045

Most Popular Now

Qure.ai to Launch AI Playbook for Radiol…

Qure.ai, one of world's leading providers of AI for healthcare, will launch its artificial intelligence (AI) playbook for radiology at this year's European Congress of Radiology. Developed with its European...

Northern Lincolnshire and Goole NHS Foun…

Northern Lincolnshire and Goole NHS Foundation Trust (NLAG) has launched new NHS App features to transform the way patients access and manage their appointments within the NHS. The programme, known...

FDB (First Databank) Achieves ISO 13485:…

FDB (First Databank) announced that it has achieved ISO 13485:2016, the Quality Management System (QMS) for medical devices. This is a significant step for FDB, the UK's leading supplier of...

First Transient Electronic Bandage Speed…

Northwestern University researchers have developed a first-of-its-kind small, flexible, stretchable bandage that accelerates healing by delivering electrotherapy directly to the wound site. In an animal study, the new bandage healed diabetic...

Orion Health Strengthens French Business…

Orion Health is strengthening its presence in France with the appointment of digital health industry heavyweight, Tristan Debove, to lead its operations. Tristan Debove has more than 25 years of experience...

Genomics England Deploys Sectra Imaging …

Genomics England has completed installation of an enterprise imaging system that will help to support a world-pioneering initiative for cancer research. The programme is linking whole genome sequencing, pathology and...

AI Approach may Help Detect Alzheimer's …

Although investigators have made strides in detecting signs of Alzheimer's disease using high-quality brain imaging tests collected as part of research studies, a team at Massachusetts General Hospital (MGH) recently...

AI Predicts Cancer Patient Survival by R…

A team of researchers from the University of British Columbia and BC Cancer have developed an artificial intelligence (AI) model that predicts cancer patient survival more accurately and with more...

Will Future Computers Run on Human Brain…

A "biocomputer" powered by human brain cells could be developed within our lifetime, according to Johns Hopkins University researchers who expect such technology to exponentially expand the capabilities of modern...

Rewired 2023 Programme Explores the Futu…

14 - 15 March 2023, London, UK. Digital Health Rewired, the premier conference, exhibition and networking show for the UK digital health community, has published its 2023 programme showcasing the very...

Detecting Anaemia Earlier in Children Us…

Researchers at UCL and University of Ghana have successfully predicted whether children have anaemia using only a set of smartphone images. The study, published in PLOS ONE, brought together researchers and...

Virtual Reality Games can be Used as a T…

Virtual reality gamers (VR game) who finished it faster than their fellow gamers also have higher levels of general intelligence and processing capacity. This was the result of a study...