Can Smartphones Predict Mortality Risk?

Passive smartphone monitoring of people’s walking activity can be used to construct population-level models of health and mortality risk, according to a new study publishing October 20th in the open access journal PLOS Digital Health by Bruce Schatz of University of Illinois at Urbana-Champaign, USA, and colleagues.

Previous studies have used measures of physical fitness, including walk tests and self-reported walk pace, to predict individual mortality risk. These metrics focus on quality rather than quantity of movement; measuring an individual’s gait speed has become a standard practice for certain clinical settings, for example. The rise of passive smartphone activity monitoring opens the possibility for population-level analyses using similar metrics.

In the new study, researchers studied 100,000 participants in the UK Biobank national cohort who wore activity monitors with motion sensors for 1 week. While the wrist sensor is worn differently than how smartphone sensors are carried, their motion sensors can both be used to extract information on walking intensity from short bursts of walking - a daily living version of a walk test.

The team was able to successfully validate predictive models of mortality risk using only 6 minutes per day of steady walking collected by the sensor, combined with traditional demographic characteristics. The equivalent of gait speed calculated from this passively collected data was a predictor of 5-year mortality independent of age and sex (pooled C-index 0.72). The predictive models used only walking intensity to simulate smartphone monitors.

"Our results show passive measures with motion sensors can achieve similar accuracy to active measures of gait speed and walk pace," the authors say. "Our scalable methods offer a feasible pathway towards national screening for health risk."

Schatz adds, "I have spent a decade using cheap phones for clinical models of health status. These have now been tested on the largest national cohort to predict life expectancy at population scale."

Zhou H, Zhu R, Ung A, Schatz B.
Population analysis of mortality risk: Predictive models from passive monitors using motion sensors for 100,000 UK Biobank participants.
PLOS Digit Health 1(10): e0000045, 2022. doi: 10.1371/journal.pdig.0000045

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...