Advancing Dynamic Brain Imaging with AI

MRI, electroencephalography (EEG) and magnetoencephalography have long served as the tools to study brain activity, but new research from Carnegie Mellon University introduces a novel, AI-based dynamic brain imaging technology which could map out rapidly changing electrical activity in the brain with high speed, high resolution, and low cost. The advancement comes on the heels of more than thirty years of research that Bin He has undertaken, focused on ways to improve non-invasive dynamic brain imaging technology.

Brain electrical activity is distributed over the three-dimensional brain and rapidly changes over time. Many efforts have been made to image brain function and dysfunction, and each method bears pros and cons. For example, MRI has commonly been used to study brain activity, but is not fast enough to capture brain dynamics. EEG is a favorable alternative to MRI technology however, its less-than-optimal spatial resolution has been a major hindrance in its wide utility for imaging.

Electrophysiological source imaging has also been pursued, in which scalp EEG recordings are translated back to the brain using signal processing and machine learning to reconstruct dynamic pictures of brain activity over time. While EEG source imaging is generally cheaper and faster, specific training and expertise is needed for users to select and tune parameters for every recording. In new published work, He and his group introduce a first of its kind AI-based dynamic brain imaging methodology, that has the potential of imaging dynamics of neural circuits with precision and speed.

"As part of a decades-long effort to develop innovative, non-invasive functional neuroimaging solutions, I have been working on a dynamic brain imaging technology that can provide precision, be effective and easy to use, to better serve clinicians and researchers," said Bin He, professor of biomedical engineering at Carnegie Mellon University.

He continues, "Our group is the first to reach the goal by introducing AI and multi-scale brain models. Using biophysically inspired neural networks, we are innovating this deep learning approach to train a neural network that can precisely translate scalp EEG signals back to neural circuit activity in the brain without human intervention."

In He's study, which was recently published in Proceedings of the National Academy of Sciences (PNAS), the performance of this new approach was evaluated by imaging sensory and cognitive brain responses in 20 healthy human subjects. It was also rigorously validated in identifying epileptogenic tissue in a cohort of 20 drug-resistant epilepsy patients by comparing AI based noninvasive imaging results with invasive measurements and surgical resection outcomes.

Results wise, the novel AI approach outperformed conventional source imaging methods when precision and computational efficiency are considered.

"With this new approach, you only need a centralized location to perform brain modeling and training deep neural network," explained He. "After collecting data in a clinical or research setting, clinicians and researchers could remotely submit the data to the centralized well trained deep neural networks and quickly receive accurate analysis results. This technology could speed up diagnosis and assist neurologists and neurosurgeons for better and faster surgical planning."

As a next step, the group plans to conduct larger clinical trials in efforts to bring the research closer to clinical implementation.

"The goal is for efficient and effective dynamic brain imaging with simple operation and low cost," explained He. "This AI-based brain source imaging technology makes it possible."

Sun R, Sohrabpour A, Worrell GA, He B.
Deep neural networks constrained by neural mass models improve electrophysiological source imaging of spatiotemporal brain dynamics.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2201128119. doi: 10.1073/pnas.2201128119

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...