Patient Deterioration Predictor could Surpass Limits of Traditional Vital Signs

An artificial intelligence-driven device that works to detect and predict hemodynamic instability may provide a more accurate picture of patient deterioration than traditional vital sign measurements, a Michigan Medicine study suggests.

Researchers captured data from over 5,000 adult patients at University of Michigan Health with the Analytic for Hemodynamic Instability. Developed at the U-M Weil Institute for Critical Care Research and Innovation, AHI is a software as a medical device designed to detect and predict changes in hemodynamic status in real-time using data from a single electrocardiogram lead. The researchers compared the results against gold standard vital sign measurements of continuous heart rate and blood pressure measured by invasive arterial monitoring in several intensive care units to determine if the AHI could indicate hemodynamic instability in real-time.

They found that the AHI detected standard indications of hemodynamic instability, a combination of elevated heart rate and low blood pressure, with nearly 97% sensitivity and 79% specificity. The results are published in Critical Care Explorations (a Society of Critical Care Medicine journal).

The findings suggest that the AHI may be able to provide continuous dynamic monitoring capabilities in patients who traditionally have intermittent static vital sign measurements, says senior author Ben Bassin, M.D., director of the Joyce and Don Massey Family Foundation Emergency Critical Care Center, also known as EC3, and an associate professor of emergency medicine at U-M Medical School.

"AHI performs extremely well, and it functions in a way that we think may have transformative clinical utility," Bassin said. "Most vital signs measurements are static, subject to human error, and require validation and interpretation. AHI is the opposite of that. It's dynamic, produces a binary output of 'stable' or 'unstable,' and it may enable early martialing of resources to patients who may not have been on a clinician's radar."

Traditional vital signs have limitations, including limited accuracy in non-invasive monitoring and the fact that patients who are not at obvious risk for immediate deterioration may only be monitored periodically every 4-6 hours or longer. The AHI, which was approved by the United States Food and Drug Administration in 2021 and is licensed to Fifth Eye, Inc. (a U-M spinoff), was designed to address those limitations.

"The vision of AHI was born out of our continued inability to identify unstable patients and to predict when patients would become unstable, especially in settings where they cannot be intensively monitored, said co-author Kevin Ward, M.D., executive director of the Weil Institute and professor of emergency medicine and biomedical engineering at Michigan Medicine.

"AHI is ideally suited to be utilized with wearable monitors such as ECG patches, that could make any hospital bed, waiting room or other setting into a sophisticated monitoring environment. The implication of such a technology is that it has the potential to save lives not only in the hospital, but also at home, in the ambulance and on the battlefield."

Researchers say future studies are needed to determine if AHI provides clinical and resource allocation benefits in patients undergoing infrequent blood pressure monitoring. The next phase of research will focus on how AHI is used at Michigan Medicine.

Schmitzberger FF, Hall AE, Hughes ME, Belle A, Benson B, Ward KR, Bassin BS.
Detection of Hemodynamic Status Using an Analytic Based on an Electrocardiogram Lead Waveform.
Crit Care Explor. 2022 May 17;4(5):e0693. doi: 10.1097/CCE.0000000000000693

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...