A Machine Learning Model to Predict Immunotherapy Response in Cancer Patients

Immunotherapy is a new cancer treatment that activates the body's immune system to fight against cancer cells without using chemotherapy or radiotherapy. It has fewer side effects than conventional anticancer drugs because it attacks only cancer cells using the body's immune system. In addition, because it uses the memory and adaptability of the immune system, patients who have benefited from its therapeutic effects experience sustained anticancer effects.

The recently developed immune checkpoint inhibitor has considerably improved the survival rate of patients with cancer. However, the problem with cancer immunotherapy is that only approximately 30% of cancer patients receive benefits from its therapeutic effect, and the current diagnostic techniques do not accurately predict the patient's response to the treatment.

Under this circumstance, the research team led by Professor Sanguk Kim (Department of Life Sciences) at POSTECH is gaining attention as they have improved the accuracy of predicting patient response to immune checkpoint inhibitors (ICIs) by using network-based machine learning. The research team discovered new network-based biomarkers by analyzing the clinical results of more than 700 patients with three different cancers (melanoma, gastric cancer, and bladder cancer) and the transcriptome data of the patients' cancer tissues. By utilizing the network-based biomarkers, the team successfully developed artificial intelligence that could predict the response to anticancer treatment. The team further proved that the treatment response prediction based on the newly discovered biomarkers was superior to that based on conventional anticancer treatment biomarkers including immunotherapy targets and tumor microenvironment markers.

In their previous study, the research team had developed machine learning that could predict drug responses to chemotherapy in patients with gastric or bladder cancer. This study has shown that artificial intelligence using the interactions between genes in a biological network could successfully predict the patient response to not only chemotherapy, but also immunotherapy in multiple cancer types.

This study helps detect patients who will respond to immunotherapy in advance and establish treatment plans, resulting in customized precision medicine with more patients to benefit from cancer treatments. Supported by the POSTECH Medical Device Innovation Center, the Graduate School of Artificial Intelligence, and ImmunoBiome Inc, this study was recently published in Nature Communications.

Kong J, Ha D, Lee J, Kim I, Park M, Im SH, Shin K, Kim S.
Network-based machine learning approach to predict immunotherapy response in cancer patients.
Nat Commun. 2022 Jun 28;13(1):3703. doi: 10.1038/s41467-022-31535-6

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...