A Machine Learning Model to Predict Immunotherapy Response in Cancer Patients

Immunotherapy is a new cancer treatment that activates the body's immune system to fight against cancer cells without using chemotherapy or radiotherapy. It has fewer side effects than conventional anticancer drugs because it attacks only cancer cells using the body's immune system. In addition, because it uses the memory and adaptability of the immune system, patients who have benefited from its therapeutic effects experience sustained anticancer effects.

The recently developed immune checkpoint inhibitor has considerably improved the survival rate of patients with cancer. However, the problem with cancer immunotherapy is that only approximately 30% of cancer patients receive benefits from its therapeutic effect, and the current diagnostic techniques do not accurately predict the patient's response to the treatment.

Under this circumstance, the research team led by Professor Sanguk Kim (Department of Life Sciences) at POSTECH is gaining attention as they have improved the accuracy of predicting patient response to immune checkpoint inhibitors (ICIs) by using network-based machine learning. The research team discovered new network-based biomarkers by analyzing the clinical results of more than 700 patients with three different cancers (melanoma, gastric cancer, and bladder cancer) and the transcriptome data of the patients' cancer tissues. By utilizing the network-based biomarkers, the team successfully developed artificial intelligence that could predict the response to anticancer treatment. The team further proved that the treatment response prediction based on the newly discovered biomarkers was superior to that based on conventional anticancer treatment biomarkers including immunotherapy targets and tumor microenvironment markers.

In their previous study, the research team had developed machine learning that could predict drug responses to chemotherapy in patients with gastric or bladder cancer. This study has shown that artificial intelligence using the interactions between genes in a biological network could successfully predict the patient response to not only chemotherapy, but also immunotherapy in multiple cancer types.

This study helps detect patients who will respond to immunotherapy in advance and establish treatment plans, resulting in customized precision medicine with more patients to benefit from cancer treatments. Supported by the POSTECH Medical Device Innovation Center, the Graduate School of Artificial Intelligence, and ImmunoBiome Inc, this study was recently published in Nature Communications.

Kong J, Ha D, Lee J, Kim I, Park M, Im SH, Shin K, Kim S.
Network-based machine learning approach to predict immunotherapy response in cancer patients.
Nat Commun. 2022 Jun 28;13(1):3703. doi: 10.1038/s41467-022-31535-6

Most Popular Now

Two Leading CIOs Join the Highland Marke…

Two of the NHS' most dynamic chief information officers have joined Highland Marketing’s advisory board of NHS IT professionals and health tech industry experts. Ian Hogan, a CIO at the Northern...

MIT Engineers Develop Stickers that can …

Ultrasound imaging is a safe and noninvasive window into the body’s workings, providing clinicians with live images of a patient’s internal organs. To capture these images, trained technicians manipulate ultrasound...

AI Analyses Neuron Changes to Detect whe…

A research group from Nagoya University in Japan has developed an artificial intelligence (AI) for analyzing cell images that uses machine learning to predict the therapeutic effect of drugs. Called...

Teaching AI to Ask Clinical Questions

Physicians often query a patient's electronic health record for information that helps them make treatment decisions, but the cumbersome nature of these records hampers the process. Research has shown that...

Patient Deterioration Predictor could Su…

An artificial intelligence-driven device that works to detect and predict hemodynamic instability may provide a more accurate picture of patient deterioration than traditional vital sign measurements, a Michigan Medicine study...

Interoperability with Open Standards: Le…

Opinion Article by Vivek Krishnan, CTO, Alcidion Group. The future of healthcare systems lies in open standards that free data from traditional, stand-alone silos and make it available to the many...

NHS Trust Dramatically Reduces Acute Kid…

A condition linked to thousands of UK deaths has been significantly reduced by healthcare professionals at County Durham and Darlington NHS Foundation Trust, with the help of a new care...

Advancing Dynamic Brain Imaging with AI

MRI, electroencephalography (EEG) and magnetoencephalography have long served as the tools to study brain activity, but new research from Carnegie Mellon University introduces a novel, AI-based dynamic brain imaging technology...

Open Call HORIZON-EIC-2022-PATHFINDERCHA…

Current technologies for digital data storage are hitting sustainability limits in terms of energy consumption and their use of rare and toxic materials. Moreover, data integrity when using those technologies...

Using Smartphones could Help Improve Mem…

Using digital devices, such as smartphones, could help improve memory skills rather than causing people to become lazy or forgetful, finds a new study led by UCL researchers. The research, published...

Proteins and Natural Language: AI Enable…

Artificial intelligence (AI) has created new possibilities for designing tailor-made proteins to solve everything from medical to ecological problems. A research team at the University of Bayreuth led by Prof...