Could a Computer Diagnose Alzheimer's Disease and Dementia?

It takes a lot of time - and money - to diagnose Alzheimer's disease. After running lengthy in-person neuropsychological exams, clinicians have to transcribe, review, and analyze every response in detail. But researchers at Boston University have developed a new tool that could automate the process and eventually allow it to move online. Their machine learning–powered computational model can detect cognitive impairment from audio recordings of neuropsychological tests - no in-person appointment needed. Their findings were published in Alzheimer's & Dementia: The Journal of the Alzheimer's Association.

"This approach brings us one step closer to early intervention," says Ioannis Paschalidis, a coauthor on the paper and a BU College of Engineering Distinguished Professor of Engineering. He says faster and earlier detection of Alzheimer's could drive larger clinical trials that focus on individuals in early stages of the disease and potentially enable clinical interventions that slow cognitive decline: "It can form the basis of an online tool that could reach everyone and could increase the number of people who get screened early."

The research team trained their model using audio recordings of neuropsychological interviews from over 1,000 individuals in the Framingham Heart Study, a long-running BU-led project looking at cardiovascular disease and other physiological conditions. Using automated online speech recognition tools - think, "Hey, Google!" - and a machine learning technique called natural language processing that helps computers understand text, they had their program transcribe the interviews, then encode them into numbers. A final model was trained to assess the likelihood and severity of an individual’s cognitive impairment using demographic data, the text encodings, and real diagnoses from neurologists and neuropsychologists.

Paschalidis says the model was not only able to accurately distinguish between healthy individuals and those with dementia, but also detect differences between those with mild cognitive impairment and dementia. And, it turned out, the quality of the recordings and how people spoke - whether their speech breezed along or consistently faltered - were less important than the content of what they were saying.

"It surprised us that speech flow or other audio features are not that critical; you can automatically transcribe interviews reasonably well, and rely on text analysis through AI to assess cognitive impairment," says Paschalidis, who's also the new director of BU’s Rafik B. Hariri Institute for Computing and Computational Science & Engineering. Though the team still needs to validate its results against other sources of data, the findings suggest their tool could support clinicians in diagnosing cognitive impairment using audio recordings, including those from virtual or telehealth appointments.

Screening before Symptom Onset

The model also provides insight into what parts of the neuropsychological exam might be more important than others in determining whether an individual has impaired cognition. The researchers' model splits the exam transcripts into different sections based on the clinical tests performed. They discovered, for instance, that the Boston Naming Test - during which clinicians ask individuals to label a picture using one word - is most informative for an accurate dementia diagnosis. "This might enable clinicians to allocate resources in a way that allows them to do more screening, even before symptom onset," says Paschalidis.

Early diagnosis of dementia is not only important for patients and their caregivers to be able to create an effective plan for treatment and support, but it's also crucial for researchers working on therapies to slow and prevent Alzheimer's disease progression. "Our models can help clinicians assess patients in terms of their chances of cognitive decline," says Paschalidis, "and then best tailor resources to them by doing further testing on those that have a higher likelihood of dementia."

Want to Join the Research Effort?

The research team is looking for volunteers to take an online survey and submit an anonymous cognitive test - results will be used to provide personalized cognitive assessments and will also help the team refine their AI model.

Amini S, Hao B, Zhang L, Song M, Gupta A, Karjadi C, Kolachalama VB, Au R, Paschalidis IC.
Automated detection of mild cognitive impairment and dementia from voice recordings: A natural language processing approach.
Alzheimers Dement. 2022 Jul 7. doi: 10.1002/alz.12721

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...