Using AI to Detect Cancer from Patient Data Securely

A new way of using artificial intelligence to predict cancer from patient data without putting personal information at risk has been developed by a team including University of Leeds medical scientists.

Artificial intelligence (AI) can analyse large amounts of data, such as images or trial results, and can identify patterns often undetectable by humans, making it highly valuable in speeding up disease detection, diagnosis and treatment.

However, using the technology in medical settings is controversial because of the risk of accidental data release and many systems are owned and controlled by private companies, giving them access to confidential patient data - and the responsibility for protecting it.

The researchers set out to discover whether a form of AI, called swarm learning, could be used to help computers predict cancer in medical images of patient tissue samples, without releasing the data from hospitals.

Swarm learning trains AI algorithms to detect patterns in data in a local hospital or university, such as genetic changes within images of human tissue. The swarm learning system then sends this newly trained algorithm - but importantly no local data or patient information - to a central computer. There, it is combined with algorithms generated by other hospitals in an identical way to create an optimised algorithm. This is then sent back to the local hospital, where it is reapplied to the original data, improving detection of genetic changes thanks to its more sensitive detection capabilities.

By undertaking this several times, the algorithm can be improved and one created that works on all the data sets. This means that the technique can be applied without the need for any data to be released to third party companies or to be sent between hospitals or across international borders.

The team trained AI algorithms on study data from three groups of patients from Northern Ireland, Germany and the USA. The algorithms were tested on two large sets of data images generated at Leeds, and were found to have successfully learned how to predict the presence of different sub types of cancer in the images.

The research was led by Jakob Nikolas Kather, Visiting Associate Professor at the University of Leeds’ School of Medicine and Researcher at the University Hospital RWTH Aachen. The team included Professors Heike Grabsch and Phil Quirke, and Dr Nick West from the University of Leeds’ School of Medicine.

Dr Kather said: "Based on data from over 5,000 patients, we were able to show that AI models trained with swarm learning can predict clinically relevant genetic changes directly from images of tissue from colon tumors."

Phil Quirke, Professor of Pathology in the University of Leeds's School of Medicine, said: "We have shown that swarm learning can be used in medicine to train independent AI algorithms for any image analysis task. This means it is possible to overcome the need for data transfer without institutions having to relinquish secure control of their data.

"Creating an AI system which can perform this task improves our ability to apply AI in the future."

Warnat-Herresthal S, Schultze H, Shastry KL, Manamohan S, Mukherjee S, Garg V, Sarveswara R, Händler K, Pickkers P, Aziz NA, Ktena S, Tran F, Bitzer M, Ossowski S, Casadei N, Herr C, Petersheim D, Behrends U, Kern F, Fehlmann T, Schommers P, Lehmann C, Augustin M, Rybniker J, Altmüller J, Mishra N, Bernardes JP, Krämer B, Bonaguro L, Schulte-Schrepping J, De Domenico E, Siever C, Kraut M, Desai M, Monnet B, Saridaki M, Siegel CM, Drews A, Nuesch-Germano M, Theis H, Heyckendorf J, Schreiber S, Kim-Hellmuth S; COVID-19 Aachen Study (COVAS), Nattermann J, Skowasch D, Kurth I, Keller A, Bals R, Nürnberg P, Rieß O, Rosenstiel P, Netea MG, Theis F, Mukherjee S, Backes M, Aschenbrenner AC, Ulas T; Deutsche COVID-19 Omics Initiative (DeCOI), Breteler MMB, Giamarellos-Bourboulis EJ, Kox M, Becker M, Cheran S, Woodacre MS, Goh EL, Schultze JL.
Swarm Learning for decentralized and confidential clinical machine learning.
Nature. 2021 Jun;594(7862):265-270. doi: 10.1038/s41586-021-03583-3

Most Popular Now

Qure.ai to Launch AI Playbook for Radiol…

Qure.ai, one of world's leading providers of AI for healthcare, will launch its artificial intelligence (AI) playbook for radiology at this year's European Congress of Radiology. Developed with its European...

Northern Lincolnshire and Goole NHS Foun…

Northern Lincolnshire and Goole NHS Foundation Trust (NLAG) has launched new NHS App features to transform the way patients access and manage their appointments within the NHS. The programme, known...

FDB (First Databank) Achieves ISO 13485:…

FDB (First Databank) announced that it has achieved ISO 13485:2016, the Quality Management System (QMS) for medical devices. This is a significant step for FDB, the UK's leading supplier of...

First Transient Electronic Bandage Speed…

Northwestern University researchers have developed a first-of-its-kind small, flexible, stretchable bandage that accelerates healing by delivering electrotherapy directly to the wound site. In an animal study, the new bandage healed diabetic...

Orion Health Strengthens French Business…

Orion Health is strengthening its presence in France with the appointment of digital health industry heavyweight, Tristan Debove, to lead its operations. Tristan Debove has more than 25 years of experience...

Genomics England Deploys Sectra Imaging …

Genomics England has completed installation of an enterprise imaging system that will help to support a world-pioneering initiative for cancer research. The programme is linking whole genome sequencing, pathology and...

AI Approach may Help Detect Alzheimer's …

Although investigators have made strides in detecting signs of Alzheimer's disease using high-quality brain imaging tests collected as part of research studies, a team at Massachusetts General Hospital (MGH) recently...

AI Predicts Cancer Patient Survival by R…

A team of researchers from the University of British Columbia and BC Cancer have developed an artificial intelligence (AI) model that predicts cancer patient survival more accurately and with more...

Will Future Computers Run on Human Brain…

A "biocomputer" powered by human brain cells could be developed within our lifetime, according to Johns Hopkins University researchers who expect such technology to exponentially expand the capabilities of modern...

Rewired 2023 Programme Explores the Futu…

14 - 15 March 2023, London, UK. Digital Health Rewired, the premier conference, exhibition and networking show for the UK digital health community, has published its 2023 programme showcasing the very...

Detecting Anaemia Earlier in Children Us…

Researchers at UCL and University of Ghana have successfully predicted whether children have anaemia using only a set of smartphone images. The study, published in PLOS ONE, brought together researchers and...

Virtual Reality Games can be Used as a T…

Virtual reality gamers (VR game) who finished it faster than their fellow gamers also have higher levels of general intelligence and processing capacity. This was the result of a study...