Using AI to Detect Cancer from Patient Data Securely

A new way of using artificial intelligence to predict cancer from patient data without putting personal information at risk has been developed by a team including University of Leeds medical scientists.

Artificial intelligence (AI) can analyse large amounts of data, such as images or trial results, and can identify patterns often undetectable by humans, making it highly valuable in speeding up disease detection, diagnosis and treatment.

However, using the technology in medical settings is controversial because of the risk of accidental data release and many systems are owned and controlled by private companies, giving them access to confidential patient data - and the responsibility for protecting it.

The researchers set out to discover whether a form of AI, called swarm learning, could be used to help computers predict cancer in medical images of patient tissue samples, without releasing the data from hospitals.

Swarm learning trains AI algorithms to detect patterns in data in a local hospital or university, such as genetic changes within images of human tissue. The swarm learning system then sends this newly trained algorithm - but importantly no local data or patient information - to a central computer. There, it is combined with algorithms generated by other hospitals in an identical way to create an optimised algorithm. This is then sent back to the local hospital, where it is reapplied to the original data, improving detection of genetic changes thanks to its more sensitive detection capabilities.

By undertaking this several times, the algorithm can be improved and one created that works on all the data sets. This means that the technique can be applied without the need for any data to be released to third party companies or to be sent between hospitals or across international borders.

The team trained AI algorithms on study data from three groups of patients from Northern Ireland, Germany and the USA. The algorithms were tested on two large sets of data images generated at Leeds, and were found to have successfully learned how to predict the presence of different sub types of cancer in the images.

The research was led by Jakob Nikolas Kather, Visiting Associate Professor at the University of Leeds’ School of Medicine and Researcher at the University Hospital RWTH Aachen. The team included Professors Heike Grabsch and Phil Quirke, and Dr Nick West from the University of Leeds’ School of Medicine.

Dr Kather said: "Based on data from over 5,000 patients, we were able to show that AI models trained with swarm learning can predict clinically relevant genetic changes directly from images of tissue from colon tumors."

Phil Quirke, Professor of Pathology in the University of Leeds's School of Medicine, said: "We have shown that swarm learning can be used in medicine to train independent AI algorithms for any image analysis task. This means it is possible to overcome the need for data transfer without institutions having to relinquish secure control of their data.

"Creating an AI system which can perform this task improves our ability to apply AI in the future."

Warnat-Herresthal S, Schultze H, Shastry KL, Manamohan S, Mukherjee S, Garg V, Sarveswara R, Händler K, Pickkers P, Aziz NA, Ktena S, Tran F, Bitzer M, Ossowski S, Casadei N, Herr C, Petersheim D, Behrends U, Kern F, Fehlmann T, Schommers P, Lehmann C, Augustin M, Rybniker J, Altmüller J, Mishra N, Bernardes JP, Krämer B, Bonaguro L, Schulte-Schrepping J, De Domenico E, Siever C, Kraut M, Desai M, Monnet B, Saridaki M, Siegel CM, Drews A, Nuesch-Germano M, Theis H, Heyckendorf J, Schreiber S, Kim-Hellmuth S; COVID-19 Aachen Study (COVAS), Nattermann J, Skowasch D, Kurth I, Keller A, Bals R, Nürnberg P, Rieß O, Rosenstiel P, Netea MG, Theis F, Mukherjee S, Backes M, Aschenbrenner AC, Ulas T; Deutsche COVID-19 Omics Initiative (DeCOI), Breteler MMB, Giamarellos-Bourboulis EJ, Kox M, Becker M, Cheran S, Woodacre MS, Goh EL, Schultze JL.
Swarm Learning for decentralized and confidential clinical machine learning.
Nature. 2021 Jun;594(7862):265-270. doi: 10.1038/s41586-021-03583-3

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...