Pilot Study Suggests AI could Help Assess, Improve Heart Transplant Outcomes

Heart transplantation can be a lifesaving operation for patients with end-stage heart failure. However, many patients experience organ transplant rejection, in which the immune system begins attacking the transplanted organ. But detecting transplant rejection is challenging - in its early stages, patients may not experience symptoms, and experts do not always agree on the degree and severity of the rejection. To help address these challenges, investigators from Brigham and Women’s Hospital created an artificial intelligence (AI) system known as the Cardiac Rejection Assessment Neural Estimator (CRANE) that can help detect rejection and estimate its severity. In a pilot study, the team evaluated CRANE's performance on samples provided by patients from three different countries, finding that it could help cardiac experts more accurately diagnose rejection and decrease the time needed for examination. Results are published in Nature Medicine.

"Our retrospective pilot study demonstrated that combining artificial intelligence and human intelligence can improve expert agreement and reduce the time needed to evaluate biopsies," said senior author Faisal Mahmood, PhD, from the Mahmood Lab at the Brigham's Department of Pathology. "Our results set the stage for large-scale clinical trials to establish the utility of AI models for improving heart transplant outcomes."

Heart biopsies are commonly used to identify and grade the severity of organ rejection in patients after heart transplantation. However, several studies have shown that experts often disagree on whether the patient is rejecting the heart or on the degree of severity of the rejection. The variability in diagnosis has direct clinical consequences, causing delays in treatment, unnecessary follow-up biopsies, anxiety, inadequate medication dosing, and, ultimately, worse outcomes.

CRANE is designed to be used in tandem with expert assessment to establish an accurate diagnosis faster, and it can also be used in settings where there may be few pathology experts available. The team trained CRANE for detection, subtyping, and grading of transplant rejection using thousands of pathology images from over 1,300 heart biopsies from the Brigham. The researchers then validated the model, using test biopsies from the Brigham and independent, external test sets received from hospitals in Switzerland and Turkey. The external validation datasets were constructed to demonstrate a large degree of variability to stress-test the proposed AI model.

CRANE performed well in detecting and assessing rejection, with results comparable to those from conventional assessments. When experts used the tool, it reduced disagreement between experts and decreased assessment time. The authors note that its use in clinical practice remains to be determined and plan to make further improvements to the system, but the results illustrate the potential of integrating AI into diagnostics.

"Throughout the history of medicine, diagnostic assessments have been largely subjective," said Mahmood. "But because of the power and assistance of computational tools, that's beginning to change. The time is right to make a shift by bringing together people with clinical expertise and those with expertise in computational science to develop assistive diagnostic tools."

Lipkova J, Chen TY, Lu MY et al.
Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies.
Nature Medicine 2022. doi: 10.1038/s41591-022-01709-2

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...