Researchers Develop Highly Accurate Modeling Tool to Predict COVID-19 Risk

As new coronavirus variants emerge and quickly spread around the globe, both the public and policymakers are faced with a quandary: maintaining a semblance of normality, while also minimizing infections. While digital contact tracing apps offered promise, the adoption rate has been low, due in part to privacy concerns.

At USC, researchers are advocating for a new approach to predict the chance of infection from COVID-19: combining anonymized cellphone location data with mobility patterns - broad patterns of how people move from place to place.

To produce "risk scores" for specific locations and times, the team used a large dataset of anonymous, real-world location signals from cell phones across the US in 2019 and 2020. The system shows a 50% improvement in accuracy compared to current systems, said the researchers.

"Our results show that it is possible to predict and target specific areas that are high-risk, as opposed to putting all businesses under one umbrella. Such risk-targeted policies can be significantly more effective, both for controlling COVID-19 and economically," said lead author Sepanta Zeighami, a computer science Ph.D. student advised by Professor Cyrus Shahabi.

"It's also unlikely that COVID-19 will be the last pandemic in human history, so if we want to avoid the chaos of 2020 and the tragic losses while keeping daily life as unaffected as possible when the next pandemic happens, we need such data-driven approaches."

To address privacy concerns, the mobility data comes in an aggregated format, allowing the researchers to see patterns without identifying individual users. The data is not being used for contact tracing, identifying infected individuals, or where they are going, said the researchers.

"Our approach relies on anonymized aggregate data," said Shahabi, study co-author and Helen N. and Emmett H. Jones Professor in Engineering and Professor of Computer Science, Electrical and Computer Engineering, and Spatial Sciences. "It is the same as traffic data, where an individual’s information is not revealed, but the aggregate data will help you to make a decision on whether to use a certain freeway at a certain time."

The paper will appear in the ACM Transactions on Spatial Algorithms and Systems.

Data-driven approaches

According to the researchers, existing risk score tools do not provide enough detailed information about infection rates at specific places, or they make unrealistic assumptions about how populations mix.

"The risk of infection varies a lot based on the location, and having a single policy, for instance, at a county level, ignores how some areas are riskier than others," said Zeighami.

So, using real-world mobility data and existing knowledge about the spread of COVID-19, the team created a simulator to generate realistic infection patterns. In the simulation, some “agents” are initially infected and spread the disease as they move around.

Then, the researchers created a Hawkes process-based model, which assigns risk scores based on location density and mobility patterns at a given time and place. Using the simulator, the researchers tested the model to determine if it could accurately predict the number of infections at different locations. It turned out, the risk scores were indeed a reliable metric for tracking infections in cities across the US, including San Francisco, New York, Chicago and Los Angeles.

The researchers found, predictably, that popular destinations in a city are riskier. But they also found that incorporating the infection mobility - how people move - as opposed to just relying on the popularity of an area helped to improve infection prediction. This, said the researchers, underscores the importance of bringing together mobility patterns and infection spread prediction models to generate risk scores.

There are two key ways the system could be used in the real world, said the researchers. The more straightforward case is to make neighborhood-level policy decisions: for instance, bars in Santa Monica, CA, should close today due to high risk in that neighborhood.

For more targeted locations, such as a specific concert stadium event, the system would crunch the mobility data from similar concerts in the past to learn how the infection risk changes in the area following this type of event. Then, using the researchers’ model and current mobility data across LA, the system could make predictions and assign risk scores.

Going forward, the team plans to develop user-specific, yet still privacy-preserving, risk scores, and to include long-term forecasting capabilities for several weeks into the future.

"The very high resolution of this mobility data, as well as our scalable approach, will enable us to estimate risk scores at a very fine-grain spatial and temporal resolution, for example, a specific restaurant at dinner time, or a shopping mall at lunchtime," said Shahabi.

"As an individual, you may want to avoid areas deemed high-risk, and policymakers could warn the public to avoid an area known to be a potential hotspot of infection. The scores can also be used for closure or reduced capacity decisions. Instead of making these decisions at the county level, public health experts can make those decisions at city, neighborhood or zip code levels."

Sirisha Rambhatla, Sepanta Zeighami, Kameron Shahabi, Cyrus Shahabi, Yan Liu.
Toward Accurate Spatiotemporal COVID-19 Risk Scores Using High-Resolution Real-World Mobility Data.
ACM Transactions on Spatial Algorithms and Systems, Volume 8, Issue 2, 2022. doi: https://doi.org/10.1145/3481044

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...