Mayo Clinic Researchers Use AI, Biomarkers to Personalize Rheumatoid Arthritis Treatment

Treatment options for rheumatoid arthritis have often relied on trial and error. Now Mayo Clinic researchers are exploring the use of artificial intelligence (AI) and pharmacogenomics to predict how patients will respond to treatments, and to personalize care. Findings were published in Arthritis Care & Research.

The study focused on predicting the response to methotrexate, one of the most common rheumatoid arthritis medications. Applying patient data that included genomic, clinical and demographic information, researchers used AI to determine an initial response to methotrexate in patients with early-stage rheumatoid arthritis. Data used in the study came from a collaboration between Mayo Clinic and the Pharmacogenetics of Methotrexate in Rheumatoid Arthritis (PAMERA) consortium, that led to early genome-wide association studies.

This work evolved from the union of AI and pharmacogenomics co-led by Liewei Wang; M.D., Ph.D., Arjun Athreya, Ph.D. and Richard Weinshilboum, M.D. "This approach began by developing tools to predict drug treatment outcomes in major depressive disorder, but we are delighted to see that it can potentially be applied widely, in this case to the drug therapy of rheumatoid arthritis," says pharmacogenomics leaders Drs. Wang and Weinshilboum.

"In my everyday practice, patients frequently ask, 'What medication will be most effective for me' or 'What is the chance this medication will help?' This is a study that seeks to address these questions," says Elena Myasoedova, M.D., Ph.D., a Mayo Clinic rheumatologist and lead author. By predicting a response to methotrexate, researchers identified which patients are most likely to benefit from this medication in the first three months of treatment.

More research is needed to understand how these findings can be used in practice. The study, which is part of a series looking at the roles of AI and pharmacogenomics in treating rheumatoid arthritis, was performed in collaboration with Mayo Clinic's Center for Individualized Medicine.

"Predicting a response to rheumatoid arthritis medication can be challenging, but this approach is very promising and is an exciting development in treating the disease," Dr. Myasoedova says.

Myasoedova E, Athreya AP, Crowson CS, Davis JM 3rd, Warrington KJ, Walchak RC, Carlson E, Kalari KR, Bongartz T, Tak PP, van Vollenhoven RF, Padyukov L, Emery P, Morgan A, Wang L, Weinshilboum RM, Matteson EL; PAMERA consortium.
Towards Individualized Prediction of Response to Methotrexate in Early Rheumatoid Arthritis: a Pharmacogenomics-driven Machine Learning Approach.
Arthritis Care Res (Hoboken). 2021 Dec 13. doi: 10.1002/acr.24834

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...