Fighting Blood Diseases with AI

Every day, cytologists around the world use optical microscopes to analyze and classify samples of bone marrow cells thousands of times. This method to diagnose blood diseases was established more than 150 years ago, but it suffers from being very complex. Looking for rare but diagnostically important cells is both a laborious and time-consuming task. Artificial intelligence (AI) has the potential to boost this method - however it needs a large amount of high-quality data to train an AI algorithm.

Largest open-source database for bone marrow cell images

The Helmholtz Munich researchers developed the largest open access database on microscopic images of bone marrow cells to date. The database consists of more than 170,000 single-cell images from over 900 patients with various blood diseases. It is the result of a collaboration from Helmholtz Munich with the LMU University Hospital Munich, the MLL Munich Leukemia Lab (one of the largest diagnostic providers in this field worldwide) and Fraunhofer Institute for Integrated Circuits.

Using the database to boost artificial intelligence

"On top of our database, we have developed a neural network that outperforms previous machine learning algorithms for cell classification in terms of accuracy, but also in terms of generalizability," says Christian Matek, lead author of the new study. The deep neural network is a machine learning concept specifically designed to process images. "The analysis of bone marrow cells has not yet been performed with such advanced neural networks," Christian Matek explains, "which is also due to the fact that high-quality, public datasets have not been available until now."

The researchers aim to further expand their bone marrow cell database to capture a broader range of findings and to prospectively validate their model. "The database and the model are freely available for research and training purposes - to educate professionals or as a reference for further AI-based approaches e.g. in blood cancer diagnostics," says study leader Carsten Marr.

Matek C, Krappe S, Münzenmayer C, Haferlach T, Marr C.
Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set.
Blood. 2021 Nov 18;138(20):1917-1927. doi: 10.1182/blood.2020010568

Most Popular Now

Health Fabric and Sandwell Council Secur…

Digital health company Health Fabric is preparing to work with Sandwell Council after learning that it has secured support from The Healthy Ageing Challenge. The company will work with public health...

Philips Highlights AI-Powered Precision …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, showcases its award-winning AI-powered systems and solutions debuting at the European Congress of Radiology (ECR, July 13-17, Vienna...

Could a Computer Diagnose Alzheimer's Di…

It takes a lot of time - and money - to diagnose Alzheimer's disease. After running lengthy in-person neuropsychological exams, clinicians have to transcribe, review, and analyze every response in...

Siemens Healthineers Accelerates and Imp…

Siemens Healthineers presents functionalities powered by Artificial Intelligence (AI) that accelerate and improve Magnetic Resonance Imaging (MRI). The quality of MR imaging is defined by the trade-off between scan time...

Building the Right Foundations to Delive…

Opinion Article by Gary Birks, Gary Birks, General Manager, UK and Ireland, Orion Health. The latest strategy for health and care IT looks to build on what has been achieved over...

Using Technology to Support Primary Care

Opinion Article by Paul Bensley, Managing Director of Primary Care Cloud Telephony Specialist X-on. It is good to see the publication of this strategy [A plan for digital health and social...

A Machine Learning Model to Predict Immu…

Immunotherapy is a new cancer treatment that activates the body's immune system to fight against cancer cells without using chemotherapy or radiotherapy. It has fewer side effects than conventional anticancer...

Virtual Reality App Trial Shown to Reduc…

Results from a University of Otago, Christchurch trial suggest fresh hope for the estimated one-in-twelve people worldwide suffering from a fear of flying, needles, heights, spiders and dogs. The trial, led...

Two Leading CIOs Join the Highland Marke…

Two of the NHS' most dynamic chief information officers have joined Highland Marketing’s advisory board of NHS IT professionals and health tech industry experts. Ian Hogan, a CIO at the Northern...

Teaching AI to Ask Clinical Questions

Physicians often query a patient's electronic health record for information that helps them make treatment decisions, but the cumbersome nature of these records hampers the process. Research has shown that...

AI Analyses Neuron Changes to Detect whe…

A research group from Nagoya University in Japan has developed an artificial intelligence (AI) for analyzing cell images that uses machine learning to predict the therapeutic effect of drugs. Called...

MIT Engineers Develop Stickers that can …

Ultrasound imaging is a safe and noninvasive window into the body’s workings, providing clinicians with live images of a patient’s internal organs. To capture these images, trained technicians manipulate ultrasound...