Worth a Thousand Words: Automated Diagnosis of COVID-19 from Chest CTs

In a little over 18 months, the novel coronavirus (Sars-CoV-2) has infected over 18 million people and caused more than 690,000 deaths. The current standard for diagnosis through reverse transcription polymerase chain reaction is limited owing to its low sensitivity, high rate of false positives, and long testing times. This makes it difficult to identify infected patients quickly and provide them with treatment. Furthermore, there is a risk that patients will still spread the disease while waiting for the results of their diagnostic test.

Chest CT scans have emerged as a quick and effective way to diagnose the disease, but they require radiologist expertise to interpret, and sometimes the scans look similar to other kinds of lung infections, like bacterial pneumonia. Now, a new paper in Medical Imaging Science by a team of scientists, including those from Daegu Gyeongbuk Institute of Science (DGIST), South Korea, details a technique for the automated and accurate interpretation of chest CT scans. “As academics who were equally affected by the COVID pandemic, we were keen to use our expertise in medical image analysis to aid in faster diagnosis and improve clinical workflows,” says Prof. Sang Hyun Park and Philip Chikontwe from DGIST, who led the study.

To build their diagnostic framework, the research team used a Machine Learning technique called “Multiple Instance Learning” (MIL). In MIL, the machine learning algorithm is “trained” using sets, or “bags,” of multiple examples called “instances.” The MIL algorithm then uses these bags to learn to label individual examples or inputs. The research team trained their new framework, called dual attention contrastive based MIL (DA-CMIL), to differentiate between COVID and bacterial pneumonia, and found that its performance was on par to other state-of-the-art automated image analysis methods. Moreover, the DA-CMIL algorithm can leverage limited or incomplete information to efficiently train its AI system.

"Our study can be viewed from both a technical and clinical perspective. First, the algorithms introduced here can be extended to similar settings with other types of medical images. Second, the 'dual attention,' particularly the 'spatial attention,' used in the model improves the interpretability of the algorithm, which will help clinicians understand how automated solutions make decisions," explain Prof. Park and Mr. Chikontwe.

This research extends far beyond the COVID pandemic, laying the foundation for the development of more robust and cheap diagnostic systems, which will be of particular benefit to under-developed countries or countries with otherwise limited medical and human resources.

Philip Chikontwe, Miguel Luna, Myeongkyun Kang, Kyung Soo Hong, June Hong Ahn, Sang Hyun Park.
Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening.
Medical Image Analysis, 2021. doi: 10.1016/j.media.2021.102105

Most Popular Now

Artificial Intelligence in Healthcare Re…

This study presents an overview of the development, adoption and use of Artificial Intelligence (AI) technologies and applications in the healthcare sector across all Member States. The main aim of...

First-of-its-Kind Healthcare Communicati…

A web and mobile app-based start-up launched during the COVID-19 pandemic to help UK healthcare professionals communicate with patients has signed its first commercial agreement with a hospital trust...

Giving AI Penalties to Get Better Diagno…

Anyone waiting for the results of a medical test knows the anxious question: 'Will my life change completely when I know?' And the relief if you test negative. Nowadays, Artificial Intelligence...

New App Helps Parents Identify Treatable…

A ground-breaking new, mobile phone app, 'GrowthMonitor' places the accurate measurement of children's height in the hands of parents and carers. Preliminary data to be presented at the Society for...

DMEA Call for Papers: Digital Health in …

26 - 28 April 2022, Berlin, Germany. Health meets digitalisation. From 26 to 28 April 2022 DMEA - Connecting Digital Health, the leading platform for health IT, is opening its doors...

Health Meets IT: DMEA Newcomer Award Inv…

26 - 28 April 2022, Berlin, Germany. Digitalisation of our healthcare sector must be stepped up - the experience of recent months has shown that. It is why new ideas on...

Bittium Exhibits its High-Tech Medical T…

Bittium exhibits its innovative products and solutions for cardiology and neurophysiology as well as R&D services for the development of medical and healthcare technology at the MEDICA 2021 event. It...

Development of AI Technology for Produci…

Transcranial focused ultrasound can be used to treat degenerative movement disorders, intractable pain, and mental disorders by delivering ultrasound energy to a specific area of the brain without opening the...

Siemens Healthineers and UCSF Create Fir…

Siemens Healthineers and UC San Francisco have formed a research and innovation-driven collaboration to make radiological imaging greener, while improving access to and quality of radiological imaging in Northern California...

Tulane University Study Uses AI to Detec…

A Tulane University researcher found that artificial intelligence (AI) can accurately detect and diagnose colorectal cancer from tissue scans as well or better than pathologists, according to a new study...

Dedalus Acquires Swiftqueue to Support P…

Dedalus Group ("Dedalus"), a leading international healthcare software solutions provider, has announced to have completed the acquisition of 100% of Swiftqueue Technologies Ltd a fast-growing cloud-native appointment and scheduling solution...

FDA Authorizes Marketing of Virtual Real…

The U.S. Food and Drug Administration today authorized marketing of EaseVRx, a prescription-use immersive virtual reality (VR) system that uses cognitive behavioral therapy and other behavioral methods to help with...