Worth a Thousand Words: Automated Diagnosis of COVID-19 from Chest CTs

In a little over 18 months, the novel coronavirus (Sars-CoV-2) has infected over 18 million people and caused more than 690,000 deaths. The current standard for diagnosis through reverse transcription polymerase chain reaction is limited owing to its low sensitivity, high rate of false positives, and long testing times. This makes it difficult to identify infected patients quickly and provide them with treatment. Furthermore, there is a risk that patients will still spread the disease while waiting for the results of their diagnostic test.

Chest CT scans have emerged as a quick and effective way to diagnose the disease, but they require radiologist expertise to interpret, and sometimes the scans look similar to other kinds of lung infections, like bacterial pneumonia. Now, a new paper in Medical Imaging Science by a team of scientists, including those from Daegu Gyeongbuk Institute of Science (DGIST), South Korea, details a technique for the automated and accurate interpretation of chest CT scans. “As academics who were equally affected by the COVID pandemic, we were keen to use our expertise in medical image analysis to aid in faster diagnosis and improve clinical workflows,” says Prof. Sang Hyun Park and Philip Chikontwe from DGIST, who led the study.

To build their diagnostic framework, the research team used a Machine Learning technique called “Multiple Instance Learning” (MIL). In MIL, the machine learning algorithm is “trained” using sets, or “bags,” of multiple examples called “instances.” The MIL algorithm then uses these bags to learn to label individual examples or inputs. The research team trained their new framework, called dual attention contrastive based MIL (DA-CMIL), to differentiate between COVID and bacterial pneumonia, and found that its performance was on par to other state-of-the-art automated image analysis methods. Moreover, the DA-CMIL algorithm can leverage limited or incomplete information to efficiently train its AI system.

"Our study can be viewed from both a technical and clinical perspective. First, the algorithms introduced here can be extended to similar settings with other types of medical images. Second, the 'dual attention,' particularly the 'spatial attention,' used in the model improves the interpretability of the algorithm, which will help clinicians understand how automated solutions make decisions," explain Prof. Park and Mr. Chikontwe.

This research extends far beyond the COVID pandemic, laying the foundation for the development of more robust and cheap diagnostic systems, which will be of particular benefit to under-developed countries or countries with otherwise limited medical and human resources.

Philip Chikontwe, Miguel Luna, Myeongkyun Kang, Kyung Soo Hong, June Hong Ahn, Sang Hyun Park.
Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening.
Medical Image Analysis, 2021. doi: 10.1016/j.media.2021.102105

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...