A Computer Algorithm Called 'Eva' May Have Saved Lives in Greece

A prescriptive computer program developed by the USC Marshall School of Business and Wharton School of Business of the University of Pennsylvania for Greece to identify asymptomatic, infected travelers may have slowed COVID-19’s spread through its borders, a new study in the journal Nature indicates.

"It was a very high-impact artificial intelligence project, and I believe we saved lives by developing a cutting edge, novel system for targeted testing during the pandemic," said Kimon Drakopoulos, a USC Marshall assistant professor of Data Sciences and Operations and one of the study's authors.

In July 2020, Greece largely reopened its borders to spare its tourism-dependent economy from the devastating impact of long-term shutdowns amid COVID-19.

Greece collaborated with USC Marshall and Wharton to create "Eva," an artificial intelligence algorithm that uses real-time data to identify high-risk visitors for testing. Evidence shows the algorithm caught nearly twice as many asymptomatic infected travelers as would have been caught if Greece had relied on only travel restrictions and randomized COVID testing.

"Our work with Eva proves that carefully integrating real-time data, artificial intelligence and lean operations offers huge benefits over conventional, widely used approaches to managing the pandemic," said Vishal Gupta, a USC Marshall associate professor of data science another of the study’s authors.

The joint study was published Wednesday in the journal Nature.

A public-private partnership

The Eva project began in summer 2020 when Drakopoulos, curious about Greece’s announcement that it was reopening its borders, sent an email to Prime Minister Kyriakos Mitsotakis asking questions about the country's plan and volunteering his help.

Within a few hours, Drakopoulos said, he received a reply directly from Mitsotakis inviting him to a meeting.

Then, USC Marshall and Wharton School researchers, along with AgentRisk founder and CEO Jon Vlachogiannis formed a partnership with Greece to develop Eva for health monitoring in the tourism-dependent country. The country had a limited supply of COVID testing supplies - an experience shared across the globe due to supply chain issues - yet had to identify likely infected travelers who came through any of the 40 different entries on its borders.

After months of design, development and testing with the Greek COVID-19 scientific task force, the researchers launched Eva.

Eva helped Greek authorities sort through massive amounts of data provided by tourists, such as where they planned to stay and visit, as well as the demographics of each traveler. Researchers then programmed Eva to sift through the information and develop profiles of the travelers who were likely infected but asymptomatic and needed testing.

"At the beginning of the cycle, travelers interested in going to Greece fill out a form online," said Gupta. "They share information like where they’ve been before, demographic information, and their travel itinerary. Based on that information, we - and Eva - were able to recommend who should be tested."

The design of Eva

Throughout the summer of 2020, certain cities were experiencing spikes, as were certain regions, while others were not. Eva took these demographic differences and the traveler's disclosed information into account. Then, it pointed Greek health authorities to the travelers with the highest potential of infection for testing.

To prevent blind spots, the system also pointed authorities to test travelers for which they had limited data. This was critical for reinforcing Eva's accuracy, which improved over time, the research showed.

With Eva, Greece tested about 17% of the estimated 41,830 households arriving in or passing through the country every day and nearly doubled the number of infections that a typical randomized testing approach would have captured.

"Given that randomized testing requires a large testing supply, Eva offers an impressive alternative," said Drakopoulos.

Drakopoulos said he was inspired to reach out to Greece given his prior data research on epidemics. Some of the main ideas of Eva's underlying model are similar to ones used by digital advertisers to place ads on social media, he said.

Bastani H, Drakopoulos K, Gupta V, Vlachogiannis J, Hadjicristodoulou C, Lagiou P, Magiorkinis G, Paraskevis D, Tsiodras S.
Efficient and targeted COVID-19 border testing via reinforcement learning.
Nature, 2021. doi: 10.1038/s41586-021-04014-z

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...