A Computer Algorithm Called 'Eva' May Have Saved Lives in Greece

A prescriptive computer program developed by the USC Marshall School of Business and Wharton School of Business of the University of Pennsylvania for Greece to identify asymptomatic, infected travelers may have slowed COVID-19’s spread through its borders, a new study in the journal Nature indicates.

"It was a very high-impact artificial intelligence project, and I believe we saved lives by developing a cutting edge, novel system for targeted testing during the pandemic," said Kimon Drakopoulos, a USC Marshall assistant professor of Data Sciences and Operations and one of the study's authors.

In July 2020, Greece largely reopened its borders to spare its tourism-dependent economy from the devastating impact of long-term shutdowns amid COVID-19.

Greece collaborated with USC Marshall and Wharton to create "Eva," an artificial intelligence algorithm that uses real-time data to identify high-risk visitors for testing. Evidence shows the algorithm caught nearly twice as many asymptomatic infected travelers as would have been caught if Greece had relied on only travel restrictions and randomized COVID testing.

"Our work with Eva proves that carefully integrating real-time data, artificial intelligence and lean operations offers huge benefits over conventional, widely used approaches to managing the pandemic," said Vishal Gupta, a USC Marshall associate professor of data science another of the study’s authors.

The joint study was published Wednesday in the journal Nature.

A public-private partnership

The Eva project began in summer 2020 when Drakopoulos, curious about Greece’s announcement that it was reopening its borders, sent an email to Prime Minister Kyriakos Mitsotakis asking questions about the country's plan and volunteering his help.

Within a few hours, Drakopoulos said, he received a reply directly from Mitsotakis inviting him to a meeting.

Then, USC Marshall and Wharton School researchers, along with AgentRisk founder and CEO Jon Vlachogiannis formed a partnership with Greece to develop Eva for health monitoring in the tourism-dependent country. The country had a limited supply of COVID testing supplies - an experience shared across the globe due to supply chain issues - yet had to identify likely infected travelers who came through any of the 40 different entries on its borders.

After months of design, development and testing with the Greek COVID-19 scientific task force, the researchers launched Eva.

Eva helped Greek authorities sort through massive amounts of data provided by tourists, such as where they planned to stay and visit, as well as the demographics of each traveler. Researchers then programmed Eva to sift through the information and develop profiles of the travelers who were likely infected but asymptomatic and needed testing.

"At the beginning of the cycle, travelers interested in going to Greece fill out a form online," said Gupta. "They share information like where they’ve been before, demographic information, and their travel itinerary. Based on that information, we - and Eva - were able to recommend who should be tested."

The design of Eva

Throughout the summer of 2020, certain cities were experiencing spikes, as were certain regions, while others were not. Eva took these demographic differences and the traveler's disclosed information into account. Then, it pointed Greek health authorities to the travelers with the highest potential of infection for testing.

To prevent blind spots, the system also pointed authorities to test travelers for which they had limited data. This was critical for reinforcing Eva's accuracy, which improved over time, the research showed.

With Eva, Greece tested about 17% of the estimated 41,830 households arriving in or passing through the country every day and nearly doubled the number of infections that a typical randomized testing approach would have captured.

"Given that randomized testing requires a large testing supply, Eva offers an impressive alternative," said Drakopoulos.

Drakopoulos said he was inspired to reach out to Greece given his prior data research on epidemics. Some of the main ideas of Eva's underlying model are similar to ones used by digital advertisers to place ads on social media, he said.

Bastani H, Drakopoulos K, Gupta V, Vlachogiannis J, Hadjicristodoulou C, Lagiou P, Magiorkinis G, Paraskevis D, Tsiodras S.
Efficient and targeted COVID-19 border testing via reinforcement learning.
Nature, 2021. doi: 10.1038/s41586-021-04014-z

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

Powerful New AI can Predict People'…

A powerful new tool in artificial intelligence is able to predict whether someone is willing to be vaccinated against COVID-19. The predictive system uses a small set of data from demographics...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...