Compiling Big Data in a Human-Centric Way

When a group of researchers in the Undiagnosed Disease Network at Baylor College of Medicine realized they were spending days combing through databases searching for information regarding gene variants, they decided to do something about it. By creating MARRVEL (Model organism Aggregated Resources for Rare Variant ExpLoration) they are now able to help not only their own lab but also researchers everywhere search databases all at once and in a matter of minutes.

This collaborative effort among Baylor, the Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital and Harvard Medical School is described in the latest online edition of the American Journal of Human Genetics.

Big data search engine
"One big problem we have is that tens of thousands of human genome variants and phenotypes are spread throughout a number of databases, each one with their own organization and nomenclature that aren't easily accessible," said Julia Wang, an M.D./Ph.D. candidate in the Medical Scientist Training Program at Baylor and a McNair Student Scholar in the Bellen lab, as well as first author on the publication. "MARRVEL is a way to assess the large volume of data, providing a concise summary of the most relevant information in a rapid user-friendly format."

MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER, all separate databases to which researchers across the globe have contributed, sharing tens of thousands of human genome variants and phenotypes. Since there is not a set standard for recording this type of information, each one has a different approach and searching each database can yield results organized in different ways. Similarly, decades of research in various model organisms, from mouse to yeast, are also stored in their own individual databases with different sets of standards.

Dr. Zhandong Liu, assistant professor in pediatrics - neurology at Baylor, a member of the Jan and Dan Duncan Neurological Research Institute at Texas Children's and co-corresponding author on the publication, explains that MARRVEL acts similar to an internet search engine.

"This program helps to collate the information in a common language, drawing parallels and putting it together on one single page. Our program curates model organism specific databases to concurrently display a concise summary of the data," Liu said.

Supporting researchers
A user can first search for a gene or variant, Wang explains. Results may include what is known about this gene overall, whether or not that gene is associated with a disease, whether it is highly occurring in the general population and how it is affected by certain mutations.

"MARRVEL helps to facilitate analysis of human genes and variants by cross-disciplinary integration of 18 million records so we can speed up the discovery process through computation," Liu said. "All this information is basically inaccessible unless researchers can access it efficiently and apply it to their own work to find causes, treatments and hopefully identify new diseases."

Collaboration
This project started as a necessity for the Model Organism Screening Center for the Undiagnosed Disease Network at Baylor, but as it grew, the group began reaching out to researchers in different disciplines for feedback on how MARRVEL might benefit them.

"This program is just the start. I think our tool is going to be a model for us to help clinicians and basic scientists more efficiently use the information already publicly available," Wang said. "It will help us understand and process all of the different mutations that researchers are discovering."

"The most exciting part is how this project is bringing so many different researchers together," Liu said. "We are working with labs we might not have normally collaborated with, trying to put together a puzzle of all this data."

Both Wang and Liu are thankful to the contributions from the genetics communities allowing them access to the databases as they developed MARRVEL.

Julia Wang, Rami Al-Ouran, Yanhui Hu, Seon-Young Kim, Ying-Wooi Wan, Michael F. Wangler, Shinya Yamamoto, Hsiao-Tuan Chao, Aram Comjean, Stephanie E. Mohr, Norbert Perrimon, Zhandong Liu, Hugo J. Bellen.
MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.
The American Journal of Human Genetics, doi: 10.1016/j.ajhg.2017.04.010.

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...