Cellphone Data Can Track Infectious Diseases

Tracking mobile phone data is often associated with privacy issues, but these vast datasets could be the key to understanding how infectious diseases are spread seasonally, according to a study published in the Proceedings of the National Academy of Sciences. Princeton University and Harvard University researchers used anonymous mobile phone records for more than 15 million people to track the spread of rubella in Kenya and were able to quantitatively show for the first time that mobile phone data can predict seasonal disease patterns.

Harnessing mobile phone data in this way could help policymakers guide and evaluate health interventions like the timing of vaccinations and school closings, the researchers said. The researchers' methodology also could apply to a number of seasonally transmitted diseases such as the flu and measles.

"One of the unique opportunities of mobile phone data is the ability to understand how travel patterns change over time," said lead author C. Jessica Metcalf, assistant professor of ecology and evolutionary biology and public affairs at Princeton's Woodrow Wilson School of Public and International Affairs. "And rubella is a well-known seasonal disease that has been hypothesized to be driven by human population dynamics, making it a good system for us to test."

"The potential of mobile phone data for quantifying mobility patterns has only been appreciated in the last few years, with methods pioneered by authors on this paper," said lead author Amy Wesolowski, a postdoctoral fellow at Harvard's School of Public Health. "It is a natural extension to look at seasonal travel using these data."

In the past, it was difficult to collect data on individuals in low-income and undeveloped countries due to a lack of technology usage. But mobile phone ownership, especially in these areas, is rapidly increasing, producing large and complex datasets on millions of people. Because of the mobility of cellphones, it is possible that phone records could predict certain health-related patterns. This spurred the researchers to take a closer look.

Ultimately, the research team wanted to see whether cellphone users and their movement around the country could predict the seasonal spread of rubella. The researchers used available records to analyze mobile phone usage and movement between June 2008 and June 2009 for more than 15 million cellphone users in Kenya. (Note: February 2009 was missing from the dataset.)

Using the location of the routing tower and the timing of each call and text message, the researchers were able to determine a daily location for each user as well as the number of trips these users took between the provinces each day. In total, more than 12 billion mobile phone communications were recorded anonymously and linked to a province.

The researchers then compared the cellphone analysis with a highly detailed dataset on rubella incidence in Kenya. They matched; the cell phone movement patterns lined up with the rubella incidence figures. In both of their analyses, rubella spiked three times a year: September and February primarily, and, in a few locations, rubella peaked again in May. This showed the researchers that cellphone movement can be a predictor of infectious-disease spread.

Overall, the results were in line with the researchers' predictions; rubella is more likely to spread when children interact with one another at the start of school and after holiday breaks. Across most of the country, this risk then decreases throughout the rest of the school-term months. (The only anomaly was in Western Kenya where the risk during school breaks was relatively higher than when school was in session; the data were insufficient to clearly indicate why.)

"Our analysis shows that mobile phone data may be used to capture seasonal human movement patterns that are relevant for understanding childhood infectious diseases," Metcalf said. "In particular, phone data can describe within-country movement patterns on a large scale, which could be especially helpful for localized treatment."

The results highlight how mobile phone data could be a powerful tool for understanding the critical drivers of epidemics. The researchers hope to next apply their methodology to measles and other infections shaped by human movement like malaria and cholera.

Additional co-authors include Bryan Grenfell, Princeton's Kathryn Briger and Sarah Fenton Professor of Ecology and Evolutionary Biology and Public Affairs; Nathan Eagle and Caroline Buckee from the Harvard School of Public Health; Janeth Kombich from the University of Kabianga in Kenya; Ottar Bjornstad from Pennsylvania State University; Justin Lessler from Johns Hopkins Bloomberg School of Public Health; and Andrew Tatem from the University of Southampton in the United Kingdom.

The paper, "Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data," was published online Aug. 17.

This work was supported by the National Science Foundation, the James S. McDonnell Foundation, the Bill and Melinda Gates Foundation, the National Institutes of Health, the Department of Homeland Security, the Fogarty International Center, the Models of Infectious Disease Agent Study program and the Wellcome Trust Sustaining Health Grant.

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...