A Safer Approach for Diagnostic Medical Imaging

Medical imaging is at the forefront of diagnostics today, with imaging techniques like MRI (magnetic resonance imaging), CT (computerized tomography), scanning, and NMR (nuclear magnetic resonance) increasing steeply over the last two decades. However, persisting problems of image resolution and quality still limit these techniques because of the nature of living tissue. A solution is hyperpolarization, which involves injecting the patient with substances that can increase imaging quality by following the distribution and fate of specific molecules in the body but that can be harmful or potentially toxic to the patient. A team of scientists from EPFL, CNRS, ENS and CPE Lyon and ETH Zürich has developed a new generation of hyperpolarization agents that can be used to dramatically enhance the signal intensity of imaged body tissues without presenting any danger to the patient. Their work is published in PNAS.

The team of scientists coordinated by Lyndon Emsley - who is currently Professor at EPFL and ENS Lyon - has developed a new generation of hyperpolarizing agents that are both effective and safe for the patient. The substances, called HYPSOs, were developed by the teams of Christophe Copéret at ETH Zurich and Chloé Thieuleux at CPE-Lyon. The HYPSOs come in the form of a fine, white, porous powder that contains the "tracking" molecules to be hyperpolarized. The HYPSO powder is made up of mesoporous silica (silicon dioxide), which is the major component of sand and is commonly used in nanotechnology.

The silica powder used for the HYPSOs consists of particles, containing pore channels. It has been designed in such a way that the surface of each pore channel can be evenly covered with molecules known as 'organic radicals'. The radicals are homogeneously distributed, and are able to induce polarization around them. "Controlling the radical distribution was a 'tour de force' never achieved in the past, which made the HYPSO materials ideal for this application," says Christophe Copéret. The pore channels are then filled with a solution of the "tracking" molecules to be hyperpolarized, which act as markers for the imaging - e.g. pyruvate, which is important in the production of energy in cells.

Using novel instruments and methods developed by Sami Jannin at EPFL, the HYPSO sample is hyperpolarized with microwaves in a magnetic field at a very low temperature. The magnetic moments of the atoms are forced to align through a process called "dynamic nuclear polarization", which transfers the spin energy of the free radicals' electrons to the markers' nuclei. The electronic spin magnetism of the hyperpolarizing agent acts on the marker molecule, aligning, or "polarizing", the nuclei of its atoms.

Hot water is then used to melt and flush the substrate out of the powder. Because of the equipment and conditions needed, the process generally takes place in a room adjacent to the imaging facility. The substrate is then ready to be injected through a long tube into the patient inside the medical imaging device. The entire process only lasts about ten seconds.

Two scans are performed, one with and one without the hyperpolarized agent. When the two images are compared, it is possible to observe the distribution of the hyperpolarized marker in the patient's body, which, depending on the medical context, can be indicative of disease. For example, accumulation of pyruvate in the prostate could be an early indication of prostate cancer.

The researchers have tested the efficiency of the HYPSOs method on several imaging markers, including pyruvate, acetate, fumarate, pure water, and a simple peptide. Because the HYPSOs is physically retained during dissolution, the technique yields pure solutions of hyperpolarized markers, free of any contaminant. The protocol is therefore simpler and potentially safer for the patient, while its dramatic efficiency on signal quality forecasts the use of this new generation of hyperpolarized agents with a broad range of molecules. As Sami Jannin points out: "We have now received queries of scientists from abroad who are eager to boost their research with this new technology. Amongst other plans, we are very excited about testing these materials in vivo."

This work represents a collaboration between EPFL, ENS Lyon, the Centre National de la Recherche Scientifique (CNRS), CPE Lyon, ETH Zurich, and the Swiss Commission for Technology and Innovation (CTI). It was also additionally funded by Lyon Science Transfert, the Swiss National Science Foundation, the SATT Lyon-Saint Etienne and the European Research Council.

Gajan D, Bornet A, Vuichoud B, Milani J, Melzi R, van Kalkeren HA, Veyre L, Thieuleux C, Conley MP, Grüning WR, Schwarzwälder M, Lesage A, Copéret C, Bodenhausen G, Emsley L, Jannin S. Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization. PNAS 29 September 2014. DOI: 10.1073/pnas.1407730111

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...