A Novel Decision Support System Makes Malaria Diagnostics More Effective

A Finnish-Swedish research group at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, and Karolinska institutet, Stockholm, has developed a novel "man and machine" decision support system for diagnosing malaria infection. This innovative diagnostic aid was described in PLOS One scientific journal. The method is based on computer vision algorithms similar to those used in facial recognition systems combined with visualization of only the diagnostically most relevant areas. Tablet computers can be utilized in viewing the images.

In this newly developed method, a thin layer of blood smeared on a microscope slide is first digitized. The algorithm analyzes more than 50,000 red blood cells per sample and ranks them according to the probability of infection. Then the program creates a panel containing images of more than a hundred most likely infected cells and presents that panel to the user. The final diagnosis is done by a health-care professional based on the visualized images.

By utilizing a set of existing, already diagnosed samples, the researchers were able to show that the accuracy of this method was comparable to the quality criteria defined by the World Health Organization. In the test setting, more than 90% of the infected samples were accurately diagnosed based on the panel. The few problematic samples were of low quality and in a true diagnostic setting would have led to further analyses.

"We are not suggesting that the whole malaria diagnostic process could or should be automated. Rather, our aim is to develop methods that are significantly less labor intensive than the traditional ones and have a potential to considerably increase the throughput in malaria diagnostics," said Research Director Johan Lundin (MD, PhD) from the Institute for Molecular Medicine Finland, FIMM.

"The equipment needed for digitization of the samples is a challenge in developed countries. In the next phase of our project we will test the system in combination with inexpensive mobile microscopy devices that our group has also developed," told the shared first author of the article Nina Linder (MD, PhD) from FIMM.

The developed support system can be applied in various other fields of medicine. In addition to other infectious diseases such as tuberculosis, the research group is planning to test the system fro cancer diagnostics in tissue samples.

"There is also a strong need for fast and accurate methods for measuring the malaria parasite load in a sample. Various malaria drug screening programs are underway and the parasite load in a large number of samples needs to be quantified for determining the efficacy of potential drugs. We are further developing the computer algorithms used in this study to meet this need as well," Dr. Linder continued.

There are more than 200 million new malaria cases yearly. High-quality microscopy is still the most accurate method for detection of malaria infection. However, microscopy requires well-trained personnel and can be very time-consuming when performed according to the recommendations. In 2012, less than half of the suspected malaria cases in Sub-Saharan Africa received a diagnostic test. The workload of the health-care personnel is excessive thus contributing to the demonstrably low accuracy of microscopy.

"The new method of imaging and analysis can revolutionise the point of care diagnostics of not only malaria but also several diseases where diagnosis depends on microscopy. The action may lead to 'market rupture' in the field of disease diagnostics," says Professor Vinod Diwan from Karolinska Institutet.

The study has been funded by the scientific organization Finska Läkaresällskapet, and Dorothea Olivia, Karl Walter och Jarl Walter Perkléns Minne Foundation and the Swedish Research Council.

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...