'Big Data' Technique Improves Monitoring of Kidney Transplant Patients

A new data analysis technique radically improves monitoring of kidney patients, according to a University of Leeds-led study, and could lead to profound changes in the way we understand our health. The research, published in the journal PLoS Computational Biology, provides a way of making sense out of the huge number of clues about a kidney transplant patient's prognosis contained in their blood.

By applying sophisticated "big data" analysis to the samples, scientists were able to crunch hundreds of thousands of variables into a single parameter indicating how a kidney transplant was faring.

That allowed the team of physicists, chemists and clinicians to predict poor function of a kidney after only two days in cases that may not previously have been detected as failing until weeks after transplant.

The extra few days would give doctors a better chance to intervene to save a transplant and improve patient recovery periods. In some cases, the team were able to predict failure from patients' blood samples taken before the transplant operation.

Dr Sergei Krivov, research fellow in the University of Leeds' Astbury Centre for Structural Molecular Biology, who led the research, said: "If you put a blood sample through Nuclear Magnetic Resonance analysis you get a very large number of different parameters that vary with the outcome for a patient.

"These are vital clues but, if you have got thousands of variables all moving in different ways in a complex system, how does a doctor bring all that information together and decide what to do? It is not possible to do this with the human mind; there are just too many variables. We have to do it with computers."

The study, which analysed daily blood samples from 18 patients immediately before and in a week-long period after kidney transplants, produced a single "optimal reaction coordinate" from the thousands of variables. This was translated to a single number (on a continuous scale from 0 to 1) describing the likelihood of a patient's state at any one time resulting in organ success or failure.

Dr Krivov said: "It is a bit like measuring GDP in the economy: a single number quantifying a huge amount of complex activity and allowing you to understand the dynamics of the system."

He added: "One of the advantages is that the output is not binary. In the past, we have tended to make decisions based on certain physical parameters. Depending on the current value or a large movement in such an indicator, we have decided whether a patient is 'healthy' or 'unhealthy' and whether or not they require treatment. At the simplest level, that could be taking their temperature. The new approach describes the dynamics of the whole system and quantifies on a continuous scale where the patient is."

Importantly, the technique does not depend on an understanding of the exact mechanism of kidney disease and is therefore, in principle, applicable in many other areas.

Dr Krivov said: "I am not a kidney specialist. I just need the data. I can then analyse it using the same equation we used here to describe the dynamics of a condition. This could be particularly powerful in areas where you are dealing with slowly developing and complex conditions, where you need to get away from a healthy-unhealthy dichotomy and engage with the incremental dynamics of the disease."

Given enough data, the technique could even be used to quantify very complex and extended processes affecting the whole population and could, ultimately, change our way of seeing our health.

"It would require a lot of data and a lot of people regularly giving their data but there is nothing in theory to stop us applying this to something like age, for instance," Dr Krivov said.

"If you are looking at biological aging, what is the best way to quantify it? You don't just have two states: 'old' or 'young'. It is a really slow process and it is certainly not described by your passport age. If we can quantify your age in a biological way, we can change the way you see your life and health. If you have a number describing it, you can see where you are speeding up biological aging and you can then work out ways to slow it down or even reverse it."

Krivov SV, Fenton H, Goldsmith PJ, Prasad RK, Fisher J, et al. (2014) Optimal Reaction Coordinate as a Biomarker for the Dynamics of Recovery from Kidney Transplant. PLoS Comput Biol 10(6): e1003685. doi:10.1371/journal.pcbi.1003685

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...