Mobile Phone Data Helps Combat Malaria

An international study led by the University of Southampton and the National Vector-borne Diseases Control Programme (NVDCP) in Namibia has used mobile phone data to help combat malaria more effectively. The study used anonymised mobile records to measure population movements within Namibia in Africa over the period of a year (2010-11). By combining this data with information about diagnosed cases of malaria, topography and climate, the researchers have been able to identify geographical 'hotspots' of the disease and design targeted plans for its elimination.

Geographer at the University of Southampton Dr Andy Tatem says: "Understanding the movement of people is crucial in eliminating malaria. Attempts to clear the disease from an area can be ruined by highly mobile populations quickly reintroducing the parasite which causes malaria.

"If we are to eliminate this disease, we need to deploy the right measures in the right place, but figures on human movement patterns in endemic regions are hard to come by and often restricted to local travel surveys and census-based migration data.

"Our study demonstrates that the rapid global proliferation of mobile phones now provides us with an opportunity to study the movement of people, using sample sizes running in to millions. This data, combined with disease case based mapping, can help us plan where and how to intervene."

Twelve months of anonymised Call Data Records (CDRs) were provided by service provider Mobile Telecommunications Limited (MTC) to the researchers (see note 1 for a full list of partners) - representing nine billion communications from 1.19 million unique subscribers, around 52 per cent of the population of Namibia. Aggregated movements of mobile users between urban areas and urban and rural areas were analysed in conjunction with data based on rapid diagnostic testing (RDT) of malaria and information on the climate, environment and topography of the country.

The results of the study help the NVDCP in Namibia improve their targeting of malaria interventions to communities most at risk. Specifically they have helped with the targeting of insecticide-treated bed net distributions in the Omusati, Kavango and Zambezi regions in 2013, and will continue to help the NVDCP prepare for a large-scale net distribution in 2014 and deployment of community health workers.

Dr Tatem comments: "The importation of malaria from outside a country will always be a crucial focus of disease control programmes, but movement of the disease within countries is also of huge significance. Understanding the human element of this movement should be a critical component when designing elimination strategies - to help target resources most efficiently.

"The use of mobile phone data is one example of how new technologies are overcoming past problems of quantifying and gaining a better understanding of human movement patterns in relation to disease control."

The paper Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning is published in the Malaria Journal and can be found at: http://www.malariajournal.com/content/13/1/52.

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...