Challenges on Biomedical Information Retrieval and Question Answering

Every day, approximately 3000 new articles are published in biomedical journals. That averages to more than 2 articles every minute. Managing this large amount of data is a challenge in itself. Yet, ensuring that this wealth of knowledge is used for the sake of the patients in a timely manner is an even more demanding task for both computer scientists and biomedical experts.

The BioASQ project, which started on October 1st 2012 and runs for 2 years, aims to push research in information technology towards highly precise biomedical information retrieval systems. The project will achieve this goal through a competition (challenge), in which systems from teams around the world will compete. BioASQ will provide the data, software, hardware and the evaluation infrastructure for the challenge. By these means, the project will ensure that the biomedical experts of the future can rely on software tools to identify, process and present the fragments of the huge space of biomedical resources that address their personal questions.

The tasks included in the BioASQ challenges will help advance the state of the art in two fields. First, the automatic classification of biomedical documents will be improved. Here, systems will be required to tag large numbers of scientific biomedical articles with terms from a predefined biomedical vocabulary. Additionally, the challenge will evaluate how well systems identify text fragments in scientific articles, and related data in public knowledge bases, in order to answer questions set by the European biomedical expert team of BioASQ.

Further results of the project will include a set of open-source tools and a social network that will support experts in setting up similar challenges, beyond the end of the project.

The BioASQ team combines researchers with complementary expertise from 6 organisations in 3 countries: the Greek National Center for Scientific Research "Demokritos" (coordinator), participating with its Institutes of 'Informatics & Telecommunications' and 'Biosciences & Applications', the German IT company Transinsight GmbH, the French University Joseph Fourier, the German research Group for Agile Knowledge Engineering and Semantic Web at the University of Leipzig, the French University Pierre et Marie Curie-Paris 6 and the Research Center of the Athens University of Economics and Business in Greece. Moreover, biomedical experts from several countries assist in the creation of the evaluation data and a number of key players in the industry and academia from around the world participate in the advisory board of the project.

For further information, please visit:
http://www.bioasq.org

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...