Sniffing out the Side Effects of Radiotherapy May Soon be Possible

Researchers at the University of Warwick and The Royal Marsden NHS Foundation Trust have completed a study that may lead to clinicians being able to more accurately predict which patients will suffer from the side effects of radiotherapy. Gastrointestinal side effects are commonplace in radiotherapy patients and occasionally severe, yet there is no existing means of predicting which patients will suffer from them. The results of the pilot study, published in the journal Sensors, outline how the use of an electronic nose and a newer technology, FAIMS (Field Asymmetric Ion Mobility Spectrometry) might help identify those at higher risk.

Warwick Medical School, working in collaboration with the School of Engineering and The Royal Marsden NHS Foundation Trust (led by Dr J Andreyev), carried out a pilot study to look into the relationship between levels of toxicity in the gut and the likelihood of experiencing side effects.

Dr Ramesh Arasaradnam, of Warwick Medical School and Gastroenterologist at University Hospitals Coventry & Warwickshire, outlines the results of the study. "In the simplest terms, we believe that patterns in toxicity levels arise from differences in a patient's gut microflora. By using this technology we can analyse stool samples and sniff out the chemicals that are produced by these microflora to better predict the risk of side effects."

The success of the pilot study will lead to a broader investigation into the possible uses of these technologies and could be truly significant in helping clinicians inform patients receiving pelvic radiotherapy, before treatment is started.

Dr Arasaradnam explains what this could mean for radiotherapy patients, "In essence, we will be able to predict those who are likely to develop severe gut related side effects by the pattern of gut fermentation that are altered as a result of radiotherapy. This will enable future directed therapy in these high risk groups."

Dr James Covington, from the Warwick School of Engineering adds, "This technology offers considerable opportunities for the future. This shows just one application of being able to inform treatment by 'sniffing' patients. We foresee a time when such technology will become as routine a diagnostic test as checking blood pressure is today."

It is further evidence of the ongoing collaboration between Warwick Medical School and School of Engineering. This technology, first developed at Warwick in the early 1990s has been in continuous development ever since, producing some of the most sophisticated chemical sensors and sensor systems available today.

In 2009, the same high tech gas sensor was taken from the automotive world and used to research into quicker diagnosis for some gastrointestinal illnesses and metabolic diseases.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...