Could Alzheimer's Disease be Diagnosed with a Simple Blood Test?

Spanish researchers, led by Pedro Carmona from the Instituto de Estructura de la Materia in Madrid, have uncovered a new promising way to diagnose Alzheimer's disease more accurately. Their technique, which is non-invasive, fast and low-cost, measures how much infrared radiation is either emitted or absorbed by white blood cells. Because of its high sensitivity, this method is able to distinguish between the different clinical stages of disease development thereby allowing reliable diagnosis of both mild and moderate stages of Alzheimer's. The work is published online in Springer's journal Analytical & Bioanalytical Chemistry.

Alzheimer's disease is the most common form of adult onset dementia and is characterized by the degeneration of the nervous system. In particular, as the disease progresses, the amount of amyloid-ß peptide in the body rises. At present, the most reliable and sensitive diagnostic techniques are invasive, e.g. require analysis of cerebrospinal fluid (the liquid that surrounds the brain and spinal cord). However, white blood cells (or mononuclear leukocytes) are also thought to carry amyloid-ß peptide in Alzheimer patients.

The researchers used two-dimensional infrared spectroscopy to measure and compare the infrared radiation emitted or absorbed by white blood cells of healthy controls, versus those of patients with mild, moderate and severe Alzheimer's disease. A total of 50 patients with Alzheimer's and 20 healthy controls took part in the study and gave blood samples.

The authors found significant differences in the range of infrared wavelengths displayed between subjects, which were attributable to the different stages of formation of amyloid-ß structures in the blood cells. The results showed that, with this method, healthy controls could be distinguished from mild and moderate sufferers of Alzheimer's disease. The method is being explored as a tool for early diagnosis.

The authors conclude: "The method we used can potentially offer a more simple detection of alternative biomarkers of Alzheimer's disease. Mononuclear leukocytes seem to offer a stable medium to determine ß-sheet structure levels as a function of disease development. Our measurements seem to be more sensitive for earlier stages of Alzheimer's disease, namely mild and moderate."

Carmona P et al (2012). Infrared spectroscopic analysis of mononuclear leukocytes in peripheral blood from Alzheimer's disease patients. Analytical and Bioanalytical Chemistry; DOI 10.1007/s00216-011-5669-9

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...