A Major Step in Molecular Simulation - Key to Designing New Drugs

Researchers at Hospital del Mar Research Institute (IMIM) and Pompeu Fabra University (UPF) have successfully reproduced and reconstructed the complete process of a small molecule binding with its target protein. IMIM and UPF are part of the VPH NoE Network and this project started as part of the VPH NoE's Seed Exemplar Project 4.

This advance enables the calculation of the binding affinity and binding timescale as well as understanding the interactions established by the drug in order to act, thus moving towards safer and more efficient design of new drugs. This groundbreaking project helps show a process that was hitherto invisible and therefore unknown, and opens up a new avenue in the design of new drugs.

The binding process of a drug, usually a small molecule, to its target protein is highly dynamic and depends on interactions at a nanometric scale (billions of times smaller than a metre) and occurs at timescales of nano/micro-seconds (billions of times faster than a second). The capturing of movements of small molecules with a resolution of up to an atom is beyond current technical capabilities. However, using computer techniques, it is possible to represent the molecules at atomic scale and reproduce their movements with high mathematical precision.

Understanding how protein and molecules bind - in which the latter causes a biological response after being recognised by the former (binding) - is vitally important for the design of new drugs. Despite the progress made so far with the technique, no study had provided a complete reconstruction of the protein-ligand binding process. "The method provides not only the binding affinity and the kinetics of the reaction, but also information about the atomic resolution during the process: binding sites, transition states and metastable states are potentially useful for expanding the probability of success when designing drugs. This methodology can be directly applied to other molecular systems and is therefore of general interest in biomedical and pharmaceutical research" explains Gianni de Fabritiis, coordinator of the Computational Biophysics Laboratory of the Biomedical Computer Research Programme (GRIB) run by Hospital del Mar Research Institute (IMIM) and Pompeu Fabra University (UPF).

The researchers are now working to expand the applicability of this methodology and make better use of the computational capabilities as, in cases in which ligands are larger and more flexible and where the proteins involve more complex binding processes, greater computational effort is required.

For further information please see the reference article: "Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations" IBuch, T Giorgino, G De Fabritiis. www.pnas.org/content/early/2011/05/31/1103547108.abstract

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...