EU Funded WOUNDMONITOR Helps Pinpoint Bacteria and Speed Up Healing

More than 4000 people die in the EU each year because of accidents caused by fire and many thousands more are hospitalised to receive treatment for burns. Thanks to EU-funded research, medical experts will be able to more quickly identify the harmful bacteria or fungus which may be lurking in the wounds of burn victims and causing an infection, speeding up the diagnostic and healing process by days. Until now, doctors have had to rely on microbiological tests that took several days to identify which bacteria were causing the infection. Researchers from Germany, Italy, Lithuania and the UK have developed a small electronic device which can pinpoint the type of bacteria in just a few minutes, by identifying the minute amounts of gas the bacteria are producing. The quicker infections can be diagnosed, the faster patients can be treated, which can in turn lower the cost of lengthy hospital stays. The EU has invested €1.67 million of ICT research funding into the Woundmonitor, developing a successful first prototype device.

Commission Vice-President for the Digital Agenda Neelie Kroes said: "Every summer we see images of people with terrible injuries caused in the home or by forest fires. Thanks to EU funding, the technology developed by WOUNDMONITOR will speed up diagnosis time and help doctors to prescribe the appropriate treatment much faster."

Most of the burns in the EU occur at home or at work and are more predominant among vulnerable groups like the elderly or young children. Early diagnosis and treatment of infection in burn patients is critical. However, despite advances in modern medicine, it can take up to three days for microbiological tests to identify the bacteria present in the wound. Only after this identification can doctors select the appropriate treatment.

Traditionally, medical students were taught to recognise bacterial infections by their characteristic odour. Clinicians and researchers from Germany, Italy, Lithuania and the UK in the WOUNDMONITOR project used the same approach, but were helped by the latest information and communication technologies (ICTs).

The researchers developed an instrument that can identify types of bacteria from the small amount of volatile gases, recognisable by smell, that they emit. The experts first identified the three major types of bacteria: staphylococcus, streptococcus and pseudomonas, which account for about 80 percent of the bacterial infections found in burns. They then identified the volatile chemicals spread by the bacteria when they multiply. With this information, the team designed an instrument - about the size of an A4 file - containing eight gas sensors. The pattern of the responses from the sensors represents the characteristics of the chemicals present, by which the bacteria are identified.

This complex but very compact instrument has been tested in a hospital in Manchester (UK) and at a Kaunas regional hospital (Lithuania). Results have been very satisfactory and the researchers have positively assessed the instrument's risk level. Several commercial companies have shown interest in the WOUNDMONITOR instrument and negotiations are underway to qualify the instrument for commercial use.

The EU funded the project with €1.67 million from its Sixth Framework Programme (6th FWP) for research.

For further information, please visit:
http://www.woundmonitor.manchester.ac.uk

Related article:

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...