The Living Human Digital Library Project's Results

The Living Human Digital Library Project (LHDL) is a grass-roots initiative aimed at developing an in silico model of the human neuromusculoskeletal system that can predict how mechanical forces are exchanged internally and externally, from the whole body down to the protein level, consistently with scope of the European Virtual Physiological Human initiative. To pursue this very ambitious objective, it is necessary for large research communities to share highly heterogeneous collections of data and models through a repository fully integrated, and directly accessible by any researcher in the world. Although inspired by the neuromusculoskeletal research community, this problem is very general, and its solution will significantly and positively affect European research, clinical and industrial practices.

LHDL developed and deployed the resource-sharing infrastructure required by the LHP community and by many other groups involved with biomedical research and practice. In particular, the project realised:

  • PhysiomeSpace, the first professional data management & sharing service dedicated to biomedical data (now running in beta version).
  • PSLoader, an application that runs on your PC and let you import virtually any biomedical dataset, organise your collection of data in space and time, and then upload it to the data management service (sign on the PhysiomeSpace service, download it for free).
  • LhpBuilder, an application with a long list of specialised functions for processing and modelling neuro-musculoskeletal system data. The software will be soon commercially distributed by SCS srl.
  • LhpSimul, a powerful architecture of execution web services for the distributed execution of data-intensive algorithms; once stored on PhysiomeSpace your data can processed in batch.
  • LhpSWS, semantic web services with full semantic brokering capable of combining storage and execution services in complex data processing flows; currently hidden, it will provide the necessary scalability as the execution web services and the collection of data increase.
  • LHDL ontologies, a collection of specialised ontologies to annotate the data and service resources available through PhysiomeSpace. All ontologies are freely downloadable in various formats.
  • LHP Data Collection, the largest collection of experimental and modelling data on the descriptive and functional anatomy, and the multiscale biomechanics of the musculoskeletal system; this large collection is progressively being uploaded on PhysiomeSpace, from where it will be freely downloadable.

The client application: PSLoader
PSLoader is a desktop application that, after authentication, allows you to import biomedical data stored in a long list of digital formats (such as DICOM3, STL, JPG, TIFF, ANSYS, and many more), and organise them in space using a hierarchical tree where the pose of one dataset is defined with respect to the parent one. The program provides also long list of interactive views, designed to visualise whatever combination of data you can have. Each dataset is annotated with a long list of metadata that are generated automatically. Additional metadata are available for you to be annotated, so as to provide a coherent set of concepts for the data stored in the digital library and the information framework for resources searching and retrieving.

The Service: PhysiomeSpace
Once you have created the data collection in PSLoader, with a single click the entire collection can be uploaded to the PhysiomeSpace servers, where it is stored in your private space. You can then access it from a simple web interface, with which you can add, remove, annotate data resources, and assign to each resource a different set of access permissions. By default all uploaded data are open only to the data owner, but at any time you can choose with whom to share each dataset.

Alternatively, other PhysiomeSpace users can search every dataset. If the data you need is available, but its owner did not share it with you, you can send a message requesting access. This gives the data owner the possibility to talk directly to anyone willing to download the data, before granting access.

PhysiomeSpace data resources can be searched and browsed in various ways relying on the fact that each data resource is annotated by a set of metadata defined according to the LHDL Master Ontology. In addition, depending on the type of data, you can choose additional sub-ontologies to add to the data special concepts that are specific to a certain data generation modality, and that are related to a chosen way to describe what the dataset "represents". While PSLoader automatically annotates a good part of the master ontology, the user is still requested to do some manual curation. Each data resource stored on PhysiomeSpace has a quality index that scores the resources in terms of how extensive is the annotation.

Once a dataset is shared with you, you can place it in your "basket", ready to be downloaded from PSLoader next time you connect to it. The dataset can then be exported in whatever format, and used with other specialised applications.

Usage terms and conditions, data reuse and privacy policy
During the beta testing phase, the service will be open as a totally free service. The data will be uploaded under complete responsibility of the users, and no guarantee will be provided whatsoever for the continuity of the service, for the storage, the integrity, and the preservation of the data stored. The confidentiality of the data will be protected only through the access limitations of the service, and in principle system administrations are in the condition to access all uploaded data.

For further information, please visit:
http://www.livinghuman.org

Related articles:

  • FP6 Projects: LHDL

Copyright © ICT for Health - European Commission - Information society and Media DG
Office: BU31 06/41 B-1049 Brussels
Tel: +32 (0)2 296 41 94
Fax: 02 296 01 81
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
http://ec.europa.eu/information_society/eHealth

Most Popular Now

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

To be Happier, Take a Vacation... from Y…

Today, nearly every American - 91% - owns a cellphone that can access the internet, according to the Pew Research Center. In 2011, only about one-third did. Another study finds...

AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network...

North Cumbria Integrated Care Signs 10-Y…

North Cumbria Integrated Care NHS Foundation Trust (NCIC) has signed a long-term agreement for use of the Alcidion Miya Precision platform, to provide an electronic patient record (EPR) for the...

AI Accelerates Discovery of Neurodevelop…

Researchers have developed an artificial intelligence (AI) approach that accelerates the identification of genes that contribute to neurodevelopmental conditions such as autism spectrum disorder, epilepsy and developmental delay. This new...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...