Novel Technique for Fluorescence Tomography of Tumors in Living Animals

Fluorescent molecules - i.e. substances which can be stimulated to emit light - are extremely valuable tools in biological research and medical diagnosis. Fluorescence can be used for instance to analyze the regulation and expression of genes, to locate proteins in cells and tissues, to follow metabolic pathways and to study the location and migration of cells. Of particular importance is the combination of fluorescence imaging with novel techniques that allow tomographic three-dimensional visualization of objects in living organisms.

At the Helmholtz Zentrum München - German Research Center for Environmental Health together with the Technische Universität München an own institute is concerned with the development and refinement of such new technologies: the Institute for Biological and Medical Imaging headed by Professor Vasilis Ntziachristos.

The quality of optical imaging in tissues is naturally limited, since beyond a penetration depth of a few hundred micrometers the photons are massively scattered due to interactions with cell membranes and organelles which results in blurred images. In the latest issue of the journal Proceedings of the National Academy of Sciences Prof. Ntziachristos and his team, together with colleagues from the Harvard Medical School and the Massachusetts General Hospital in Boston, USA, report on the use of the so-called early arriving photons together with tomographic principles. Early photons are the first photons that arrive onto a photon detector after illumination of tissue by an ultra-short photon pulse and undergo less scattering in comparison to photons arriving at later times. Compared to continuous illumination measurements a combination of these less scattered photons with 360-degree illumination-detection resulted in sharper and more accurate images of mice under investigation.

With this technique, called 'Early Photon Tomography' (EPT), the scientists imaged lung tumors in living mice. For this purpose they injected a substance into to the animals, which normally does not fluoresce, but becomes fluorescent after contact with certain cysteine proteases such as cathepsins. The amount of these proteases is enriched in lung tumors which allows fluorescence imaging of the tumor tissue. Comparison with conventional x-ray tomography showed, that EPT is not only a very sensitive technique for imaging of lung tumors in living organisms, but also has the potential to reveal biochemical changes that reflect the progression of the disease, which could not be detected by conventional X-ray imaging.

While early-photons are typically associated with reduced signal available for image formation, the authors demonstrated that due to the wide-field implementation, EPT operates with very small reduction in average signal strength as in conventional tomographic methods operating using continuous light illumination. In this respect EPT is a practical method for significantly improving the performance of fluorescence tomography in animals over existing implementations. At present EPT is practicable only with small animals, but - as stated by the authors of the paper - further development of the equipment can allow niche applications of the technique also with larger organisms including humans.

Publication:
Niedre, M.J., de Kleine, R.H., Aikawa, E., Kirsch, D.G., Weissleder, R., Ntziachristos, V. (2008): Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proceedings of the National Academy of Sciences; Published online before print November 17, 2008, doi: 10.1073/pnas.0804798105

For further information, please visit:
http://www.helmholtz-muenchen.de/en/ibmi/

About Helmholtz Zentrum München
The Helmholtz Zentrum München is a research institution of the Federal Government and the State of Bavaria within the Helmholtz Association of German Research Centres, the largest scientific organisation in Germany.

The Helmholtz Association is a community of 15 scientific-technical and biological-medical research centres. These centres have been commissioned with pursuing long-term research goals on behalf of the state and society. The Association strives to gain insights and knowledge so that it can help to preserve and improve the foundations of human life. It does this by identifying and working on the grand challenges faced by society, science and industry. Helmholtz Centres perform top-class research in strategic programmes in six core fields: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space.

In future, the Helmholtz Zentrum München will be represented within the research field Health of the Helmholtz Association with both programs, Environmental Health und Systemic Analysis of Multifactorial Diseases, as well as in the field Earth and Environment with the Terrestrial Environment program.

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...