European Research Project to Improve Detection and Diagnosis of Breast Cancer

HAMAMHAMAM - European Highly Accurate Breast Cancer Diagnosis through Integration of Biological Knowledge, Novel Imaging Modalities, and Modelling - consists of 9 project partners from 7 countries with leading expertise in the field of breast imaging diagnosis, with EIBIR as the coordinating partner. The 3-year project started in September 2008 and is supported by the European Commission with a financial contribution of €3.6m.

Despite tremendous advances in modern imaging technology, both early detection and accurate diagnosis of breast cancer are still unresolved challenges. Unnecessary biopsies are taken and tumours frequently go undetected until a stage where therapy is costly or unsuccessful.

HAMAM will tackle this challenge by providing a means to seamlessly integrate the available multi-modal images and the patient information on a single clinical workstation. Based on knowledge gained from a large multi-disciplinary database, populated within the scope of this project, suspicious breast tissue will be characterised and classified.

The exact diagnosis of suspicious breast tissue is ambiguous in many cases. HAMAM will resolve this using statistical knowledge extracted from the large case database. The clinical workstation will suggest additional image modalities that may be captured to optimally resolve these uncertainties. The workstation thus guides the clinician in establishing a patient-specific optimal diagnosis. This ultimately leads to a more specific and sensitive individual diagnosis.

HAMAM advances the state-of-the-art as it proposes a sound statistical and mathematical framework to integrate and combine the whole spectrum of patient information. HAMAM also goes beyond currently available technology by developing a prototypical solution that will be able to efficiently integrate all relevant clinical and imaging information within a single platform.

The overall strategy of the project is to foster the exchange and collaboration between basic scientists, clinicians, and IT experts, and to condense all information and knowledge in a common database and prototypical platform for multi-modal breast diagnosis.

For further information, please visit:
http://www.hamam-project.eu

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...