Philips and Academic Medical Center in Amsterdam Aim to Improve Care for Diabetic Patients

PhilipsRoyal Philips (NYSE: PHG, AEX: PHIA) and Academic Medical Center (AMC) in Amsterdam, the Netherlands, have announced their collaboration in a European multi-center clinical study to investigate a new diagnostic technique targeting immediate assessment of the results of a minimally-invasive treatment for diabetic foot and critical limb ischemia. Severe diabetic foot complications, which are the result of hampered blood circulation, affect millions of diabetic patients globally.

Amputation is one of the most important risks for patients with diabetic foot disease. At the moment, there is no diagnostic method to immediately assess the result of an angioplasty procedure - currently the preferred treatment option to restore blood circulation in the foot. The result is typically only determined months after treatment by following the progress of the healing process or lack of it. In order to provide optimal care, there is therefore a clear need for a new diagnostic tool to assess treatment results more quickly. The European study in which Philips and AMC are collaborating will start in the summer of 2015 with final results expected in 2017.

"This could be a paradigm shift in our approach to critical limb ischemia," said Professor Jim Reekers, interventional radiologist at AMC and fellow of the Cardiovascular and Interventional Radiological Society of Europe (CIRSE). Over the past few months, he and his team have been testing the new technology and have already collected observational data from over 100 cases.

He added: "If we can predict the effect of treatment immediately after revascularization, then we will have a head start in developing a pro-active care plan for the patient's recovery at home, instead of a more reactive approach. The first observations using the new diagnostic technique are consistent and promising, and have already provided valuable insights into many pending questions regarding critical limb ischemia."

Globally, the International Diabetes Federation estimates that 387 million people are living with diabetes and that this figure will almost double in the next twenty years. Diabetes can impact the condition of the blood vessels and can lead to insufficient blood circulation, particularly in the legs and feet. In severe cases, known as critical limb ischemia, this can result in significant tissue damage (for example, ulcers and gangrene in the feet) and amputation. Restoration of blood flow from the major blood vessels into the network of small arteries and capillaries that transfer nutrients into the surrounding tissue (a process that is hampered) is vital for the healing process.

The current preferred treatment is image-guided minimally invasive treatments such as angioplasty to re-open the major blood vessels in the foot with the objective of restoring the flow to the micro-circulation. Under live interventional X-ray guidance, a catheter is inserted into a blood vessel in the leg and navigated to the foot in order to re-open the major blood vessels with a balloon and/or a stent. Perfusion angiography is used to obtain a map of the vascular network in the foot. However, until now, it has not been possible to image the function of the micro-circulation, making it difficult to determine the immediate impact of the procedure on the micro-vascularization. In collaboration with AMC, Philips is developing a new technology to analyze perfusion angiography images and obtain quantitative information on blood flow in the capillaries (perfusion) in the foot.

Perfusion angiography is a novel X-ray imaging technology that exploits the high temporal and spatial resolution of X-ray angiographic images. Philips' new software assesses subtle physiological changes in the perfusion level. The perfusion image can be constructed from a standard digital subtraction angiography (DSA) performed using a Philips AlluraXper FD20 system, meaning that no additional patient exposure to radiation or contrast agent is needed. The generated perfusion image shows the physiological perfusion state as a color-coded display. From this information a graphic representation can be obtained, which contains important information about the functioning of the micro-circulation.

"We are committed to improving the care that doctors can provide to their patients by innovating image-guided therapy procedures and maximizing their impact," said Ronald Tabaksblat, business leader Image Guided Therapy Systems at Philips. "Diabetes is already the leading non-trauma cause of amputation, and prevalence of the condition is widely predicted to increase significantly in the coming years. Currently, millions of people with diabetes globally are at risk of suffering a lower-limb amputation. As a new instrument for image-guided therapy, perfusion angiography could usher in a new age of precision personalized treatment for diabetic patients that suffer from severe foot complications - improving their quality of life and mobility while helping to reduce diabetes-related healthcare costs."

Related news articles:

About Royal Philips
Royal Philips (NYSE: PHG, AEX: PHIA) is a diversified health and well-being company, focused on improving people’s lives through meaningful innovation in the areas of Healthcare, Consumer Lifestyle and Lighting. Headquartered in the Netherlands, Philips posted 2014 sales of EUR 21.4 billion and employs approximately 108,000 employees with sales and services in more than 100 countries. The company is a leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as male shaving and grooming and oral healthcare.

Most Popular Now

Artificial Intelligence: Unexpected Resu…

Artificial intelligence (AI) is on the rise. Until now, AI applications generally have "black box" character: How AI arrives at its results remains hidden. Prof. Dr. Jürgen Bajorath, a cheminformatics...

Printed Robots with Bones, Ligaments, an…

3D printing is advancing rapidly, and the range of materials that can be used has expanded considerably. While the technology was previously limited to fast-curing plastics, it has now been...

AI identifies Non-Smokers at High Risk f…

Using a routine chest X-ray image, an artificial intelligence (AI) tool can identify non-smokers who are at high risk for lung cancer, according to a study being presented next week...

Orchestrating the New World of AI in Hea…

Orion Health's UK and Ireland Customer Conference 2023 focused on the future potential and immediate, practical application of AI to healthcare - and gave delegates a first look at the...

Study Reveals Bias in AI Tools when Diag…

Machine learning algorithms designed to diagnose a common infection that affects women showed a diagnostic bias among ethnic groups, University of Florida researchers found. While artificial intelligence (AI) tools offer...

Researchers Take New AI Approach to Anal…

Researchers at Karolinska Institutet and SciLifeLab in Sweden have combined artificial intelligence (AI) techniques used in satellite imaging and community ecology to interpret large amounts of data from tumour tissue...

Medical AI Tool from UF, NVIDIA gets Hum…

A new artificial intelligence (AI) computer program created by researchers at the University of Florida and NVIDIA can generate doctors' notes so well that two physicians couldn't tell the difference...

Commission Opens Calls to Invest €42 Mil…

Today, the European Commission opened a new set of calls for proposals under the 2023-2024 Work Programmes of the Digital Europe Programme with a focus on advanced digital skills. The calls...

Bayer Championing Advancements in Radiol…

Bayer continues to advance its comprehensive Radiology portfolio with progress in the development pipeline of its investigational contrast agent as well as new innovations in the area of Artificial Intelligence...

MEDICA and COMPAMED: Medical Technology …

13 - 16 November 2023, Düsseldorf, Germany. After four days of business, MEDICA and COMPAMED in Düsseldorf delivered impressive confirmation that they are excellent platforms for the worldwide medical technology business...

AI Predicts Developmental Paths in Prema…

Researchers at UMC Utrecht have developed an AI model to predict long-term outcome in extremely premature babies early in life. The model can identify which infants might face intellectual disability...

AI Paves Way for New Medicines

A team of researchers from LMU, ETH Zurich, and Roche Pharma Research and Early Development (pRED) Basel has used artificial intelligence (AI) to develop an innovative method that predicts the...