Philips Announces Breakthrough in New Medical Imaging Technology

Royal Philips ElectronicsRoyal Philips Electronics (NYSE: PHG, AEX: PHI) today announced the first 3D imaging results obtained with a new imaging technology called Magnetic Particle Imaging (MPI). The technology, which uses the magnetic properties of iron-oxide nanoparticles injected into the bloodstream, has been used in a pre-clinical study to generate unprecedented real-time images of arterial blood flow and volumetric heart motion. This represents a major step forward in taking Magnetic Particle Imaging from a theoretical concept to an imaging tool to help improve diagnosis and therapy planning for many of the world’s major diseases, such as heart disease, stroke and cancer. The results of the pre-clinical study were published in issue 54 of Physics in Medicine and Biology (2009).

"A novel non-invasive cardiac imaging technology is required to further unravel and characterize the disease processes associated with atherosclerosis, in particular those associated with vulnerable plaque formation which is a major risk factor for stroke and heart attacks," says Professor Valentin Fuster, M.D., Ph.D., director of the Mount Sinai Heart Center, New York. "Through its combined speed, resolution and sensitivity, Magnetic Particle Imaging technology has great potential for this application, and the latest in-vivo imaging results represent a major breakthrough."

"We are the first in the world to demonstrate that Magnetic Particle Imaging can be used to produce real-time in-vivo images that accurately capture cardiovascular activity," says Henk van Houten, senior vice president of Philips Research and head of the Healthcare research program. "By adding important functional information to the anatomical data obtained from existing modalities such as CT and MR, Philips' MPI technology has the potential to significantly help in the diagnosis and treatment planning of major diseases such as atherosclerosis and congenital heart defects."

Philips' Magnetic Particle Imaging uses the magnetic properties of injected iron-oxide nanoparticles to measure the nanoparticle concentration in the blood. Because the human body contains no naturally occurring magnetic materials visible to MPI, there is no background signal. After injection, the nanoparticles therefore appear as bright signals in the images, from which nanoparticle concentrations can be calculated. By combining high spatial resolution with short image acquisition times (as short as 1/50th of a second), Magnetic Particle Imaging can capture dynamic concentration changes as the nanoparticles are swept along by the blood stream. This could ultimately allow MPI scanners to perform a wide range of functional cardiovascular measurements in a single scan. These could include measurements of coronary blood supply, myocardial perfusion, and the heart's ejection fraction, wall motion and flow speeds.

The results obtained from Philips' experimental MPI scanner mark an important step towards the development of a whole-body system for use on humans. Some of the technical challenges in scaling up the system relate to the magnetic field generation required for human applications. Others lie in the measurement and processing of the extremely weak signal emitted by the nanoparticles. Signal measurement and processing are areas where Philips has a great deal of proven expertise and experience that it is currently applying to the task.

The scientific article "Three-dimensional real-time in vivo magnetic particle imaging" published in issue 54 of Physics in Medicine and Biology (2009) can be downloaded from http://stacks.iop.org/0031-9155/54/L1.

Related news articles:

About Royal Philips Electronics
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified Health and Well-being company, focused on improving people's lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of "sense and simplicity". Headquartered in the Netherlands, Philips employs approximately 121,000 employees in more than 60 countries worldwide. With sales of EUR 26 billion in 2008, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare. News from Philips is located at www.philips.com/newscenter.

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...