AI Tool Decodes Brain Cancer's Genome During Surgery

Scientists have designed an AI tool that can rapidly decode a brain tumor's DNA to determine its molecular identity during surgery - critical information that under the current approach can take a few days and up to a few weeks.

Knowing a tumor's molecular type enables neurosurgeons to make decisions such as how much brain tissue to remove and whether to place tumor-killing drugs directly into the brain - while the patient is still on the operating table.

A report on the work, led by Harvard Medical School researchers, is published July 7 in the journal Med.

Accurate molecular diagnosis - which details DNA alterations in a cell - during surgery can help a neurosurgeon decide how much brain tissue to remove. Removing too much when the tumor is less aggressive can affect a patient's neurologic and cognitive function. Likewise, removing too little when the tumor is highly aggressive may leave behind malignant tissue that can grow and spread quickly.

"Right now, even state-of-the-art clinical practice cannot profile tumors molecularly during surgery. Our tool overcomes this challenge by extracting thus-far untapped biomedical signals from frozen pathology slides," said study senior author Kun-Hsing Yu, assistant professor of biomedical informatics in the Blavatnik Institute at HMS.

Knowing a tumor's molecular identity during surgery is also valuable because certain tumors benefit from on-the-spot treatment with drug-coated wafers placed directly into the brain at the time of the operation, Yu said.

"The ability to determine intraoperative molecular diagnosis in real time, during surgery, can propel the development of real-time precision oncology," Yu added.

The standard intraoperative diagnostic approach used now involves taking brain tissue, freezing it, and examining it under a microscope. A major drawback is that freezing the tissue tends to alter the appearance of cells under a microscope and can interfere with the accuracy of clinical evaluation. Furthermore, the human eye, even when using potent microscopes, cannot reliably detect subtle genomic variations on a slide.

The new AI approach overcomes these challenges.

The tool, called CHARM (Cryosection Histopathology Assessment and Review Machine), is freely available to other researchers. It still has to be clinically validated through testing in real-world settings and cleared by the FDA before deployment in hospitals, the research team said.

Cracking cancer's molecular code

Recent advances in genomics have allowed pathologists to differentiate the molecular signatures - and the behaviors that such signatures portend - across various types of brain cancer as well as within specific types of brain cancer. For example, glioma - the most aggressive brain tumor and the most common form of brain cancer - has three main subvariants that carry different molecular markers and have different propensities for growth and spread.

The new tool's ability to expedite molecular diagnosis could be particularly valuable in areas with limited access to technology to perform rapid cancer genetic sequencing.

Beyond the decisions made during surgery, knowledge of a tumor’s molecular type provides clues about its aggressiveness, behavior, and likely response to various treatments. Such knowledge can inform post-operative decisions.

Furthermore, the new tool enables during-surgery diagnoses aligned with the World Health Organization’s recently updated classification system for diagnosing and grading the severity of gliomas, which calls for such diagnoses to be made based on a tumor's genomic profile.

Training CHARM

CHARM was developed using 2,334 brain tumor samples from 1,524 people with glioma from three different patient populations. When tested on a never-before-seen set of brain samples, the tool distinguished tumors with specific molecular mutations at 93 percent accuracy and successfully classified three major types of gliomas with distinct molecular features that carry different prognoses and respond differently to treatments.

Going a step further, the tool successfully captured visual characteristics of the tissue surrounding the malignant cells. It was capable of spotting telltale areas with greater cellular density and more cell death within samples, both of which signal more aggressive glioma types.

The tool was also able to pinpoint clinically important molecular alterations in a subset of low-grade gliomas, a subtype of glioma that is less aggressive and therefore less likely to invade surrounding tissue. Each of these changes also signals different propensity for growth, spread, and treatment response.

The tool further connected the appearance of the cells - the shape of their nuclei, the presence of edema around the cells - with the molecular profile of the tumor. This means that the algorithm can pinpoint how a cell’s appearance relates to the molecular type of a tumor.

This ability to assess the broader context around the image renders the model more accurate and closer to how a human pathologist would visually assess a tumor sample, Yu said.

The researchers say that while the model was trained and tested on glioma samples, it could be successfully retrained to identify other brain cancer subtypes.

Scientists have already designed AI models to profile other types of cancer - colon, lung, breast - but gliomas have remained particularly challenging due to their molecular complexity and huge variation in tumor cells' shape and appearance.

The CHARM tool would have to be retrained periodically to reflect new disease classifications as they emerge from new knowledge, Yu said.

"Just like human clinicians who must engage in ongoing education and training, AI tools must keep up with the latest knowledge to remain at peak performance."

Nasrallah MP, Zhao J, Tsai CC, Meredith D, Marostica E, Ligon KL, Golden JA, Yu KH.
Machine learning for cryosection pathology predicts the 2021 WHO classification of glioma.
Med. 2023 Jun 29:S2666-6340(23)00189-7. doi: 10.1016/j.medj.2023.06.002

Most Popular Now

Bayer Launches New Healthy-Aging Ecosyst…

Combining a scientifically formulated dietary supplement, a leading-edge wellness companion app, and a saliva-based a biological age test by Chronomics, Bayer is taking a big step in the emerging healthy-aging...

Airwave Healthcare Expands Team with Fra…

Patient stimulus technology provider Airwave Healthcare has appointed Francesca McPhail, who will help health and care providers achieve more from their media and entertainment systems for people receiving care. Francesca McPhail...

Scientists Use AI to Detect Chronic High…

Researchers at Klick Labs unveiled a cutting-edge, non-invasive technique that can predict chronic high blood pressure (hypertension) with a high degree of accuracy using just a person's voice. Just published...

New AI-Driven Tool could Revolutionize B…

Researchers at the Icahn School of Medicine at Mount Sinai have developed a noninvasive technique that could dramatically improve the way doctors monitor intracranial hypertension, a condition where increased pressure...

ChatGPT Outperformed Trainee Doctors in …

The chatbot ChatGPT performed better than trainee doctors in assessing complex cases of respiratory disease in areas such as cystic fibrosis, asthma and chest infections in a study presented at...

Former NHS CIO Will Smart Joins Alcidion

A former national chief information officer for health and social care in England, Will Smart will join the Alcidion Group board in a global role from October. He will provide...

The Darzi Review: The NHS "Is in Se…

Lyn Whitfield, content director at Highland Marketing, takes a look at Lord Darzi's review of the NHS, immediate reaction, and next steps. The review calls for a "tilt towards technology...

Can Google Street View Data Improve Publ…

Big data and artificial intelligence are transforming how we think about health, from detecting diseases and spotting patterns to predicting outcomes and speeding up response times. In a new study analyzing...

Healthcare Week Luxembourg: Second Editi…

1 - 2 October 2024, Luxembourg.Save the date: Healthcare Week Luxembourg is back on 1 and 2 October 2024 at Luxexpo The Box. Acclaimed last year by healthcare professionals from...

SPARK TSL Appoints David Hawkins as its …

SPARK TSL has appointed David Hawkins as its new sales director, to support take-up of the SPARK Fusion infotainment solution by NHS trusts and health boards. SPARK Fusion is a state-of-the-art...

AI Products Like ChatGPT can Provide Med…

The much-hyped AI products like ChatGPt may provide medical doctors and healthcare professionals with information that can aggravate patients' conditions and lead to serious health consequences, a study suggests. Researchers considered...

One in Five UK Soctors use AI Chatbots

A survey led by researchers at Uppsala University in Sweden reveals that a significant proportion of UK general practitioners (GPs) are integrating generative AI tools, such as ChatGPT, into their...