AI Analysis of Cancer Mutations may Improve Therapy

Cancer has many faces - no wonder, then, that the range of cancer-causing mutations is huge as well. The totality of such genomic alterations in an individual is what experts call a "mutational landscape." These landscapes differ from one another depending on the type of cancer. And even people suffering from the same cancer often have different mutation patterns.

Researchers have already catalogued the mutational landscapes of numerous types of cancer. Somatic structural variants (SVs) have been shown to account for more than half of all cancer-driving mutations. These are those mutations in cells that emerge over the course of life - such as when copying errors creep into the DNA during cell division - and thereby alter the chromosome structure. They are not inherited and are found only in affected cells and in their daughter cells. As we age, such genomic alterations become more numerous, and a person's mutational landscape increasingly comes to resemble a unique mosaic.

Although somatic SVs play a crucial role in cancer development, relatively little is known about them. "There is a lack of methods that analyze their effects on cell function," explains Dr. Ashley Sanders, who heads the Genome Stability and Somatic Mosaicism Lab at the Max Delbrück Center. That's changing thanks to new research findings, which Sanders recently published in the journal Nature Biotechnology along with the European Molecular Biology Laboratory (EMBL). "We developed a computational analysis method to detect and identify the functional effects of somatic SVs," she reports. This enabled the team to understand the molecular consequences of individual somatic mutations in different leukemia patients, giving them new insights into the mutation-specific alterations. Sanders says it may also be possible to use these findings to develop therapies that target the mutated cells, adding that “they open up exciting new avenues for personalized medicine."

Their calculations are based on data from Strand-seq - a special single-cell sequencing method that Sanders played an instrumental role in developing and that was first introduced to the scientific community in 2012. This technique can examine a cell’s genome in much greater detail than conventional single-cell sequencing technologies. Thanks to a sophisticated experimental protocol, the Strand-seq method can independently analyze the two parental DNA strands (one from the father and one from the mother). With conventional sequencing methods, distinguishing such homologs - chromosomes that are similar in shape and structure but not identical - is nearly impossible. "By resolving the individual homologs within a cell, somatic SVs can be identified much better than with other methods," explains Sanders. The approach used for doing this was described by the researcher and her colleagues in a paper that appeared in Nature Biotechnology in 2020.

The research team is part of the joint research focus “Single-Cell Approaches for Personalized Medicine” of the Berlin Institute of Health at Charité (BIH), Charité - Universitätsmedizin Berlin, and the Max Delbrück Center.

Building on this work, they are now able to also determine the positions of nucleosomes in each cell. Nucleosomes are units of DNA wrapped around protein complexes called histones, and play a crucial role in organizing chromosomes. The position of nucleosomes can change during gene expression, with the type of wrapping revealing whether or not a gene is active. Sanders and her colleagues developed a self-learning algorithm to compare the gene activity of patient cells with and without somatic SV mutations, allowing them to determine the molecular impact of the structural variants.

"We can now take a sample from a patient, look for the mutations that led to the disease, and also learn the signaling pathways that the disease-causing mutations disrupt," explains Sanders. For example, the team was able to identify a rare but very aggressive mutation in a leukemia patient. The nucleosome analysis provided the researchers with information about the signaling pathways involved, which they used to specifically inhibit the growth of cells containing the mutation. "This means that a single test tells us something about the cellular mechanisms involved in cancer formation," says Sanders. "We can eventually use this knowledge to develop personalized treatments, guided by each patient’s unique condition."

Jeong H, Grimes K, Rauwolf KK, Bruch PM, Rausch T, Hasenfeld P, Benito E, Roider T, Sabarinathan R, Porubsky D, Herbst SA, Erarslan-Uysal B, Jann JC, Marschall T, Nowak D, Bourquin JP, Kulozik AE, Dietrich S, Bornhauser B, Sanders AD, Korbel JO.
Functional analysis of structural variants in single cells using Strand-seq.
Nat Biotechnol. 2022 Nov 24. doi: 10.1038/s41587-022-01551-4

Most Popular Now

AI Predictions for Colorectal Cancer: On…

Colorectal cancer (CRC) ranks second in leading causes of cancer-related deaths globally, according to the WHO. For the first time, researchers from Helmholtz Munich and the University of Technology Dresden...

Combining AI Models Improves Breast Canc…

Combining artificial intelligence (AI) systems for short- and long-term breast cancer risk results in an improved cancer risk assessment, according to a study published in Radiology, a journal of the...

ChatGPT Shows 'Impressive' Acc…

A new study led by investigators from Mass General Brigham has found that ChatGPT was about 72 percent accurate in overall clinical decision making, from coming up with possible diagnoses...

Healthcare Chatbot: Expand Support with …

The Danish eHealth platform, sundhed.dk, has faced a substantial surge in requests from Danish citizens and has swiftly expanded its support and effectively adapt to the ongoing changes in queries due...

WiFi SPARK's Healthcare Business Re…

Leading WiFi provider WiFi SPARK is rebranding its healthcare arm as SPARK Technology Services Limited. The new identity marks the completion of the integration of the former Hospedia bedside unit...

ChatGPT is Debunking Myths on Social Med…

ChatGPT could help to increase vaccine uptake by debunking myths around jab safety, say the authors of a study published in the peer-reviewed journal Human Vaccines and Immunotherapeutics. The researchers asked...

Online AI-Based Test for Parkinson'…

An artificial intelligence (AI) tool developed by researchers at the University of Rochester can help people with Parkinson's disease remotely assess the severity of their symptoms within minutes. A study...

AI Performs Comparably to Human Readers …

Using a standardized assessment, researchers in the UK compared the performance of a commercially available artificial intelligence (AI) algorithm with human readers of screening mammograms. Results of their findings were...

Siemens Healthineers Expands Production …

Siemens Healthineers is expanding its site in Rudolstadt, Germany. By mid 2024, a new manufacturing building will be built on the site. The new manufacturing plant will produce electron accelerators...

More Cases of Breast Cancer Detected wit…

One radiologist supported by AI detected more cases of breast cancer in screening mammography than two radiologists working together, reports the ScreenTrustCAD study from Karolinska Institutet in The Lancet Digital...

MEDICA 2023 + COMPAMED 2023: "Where…

13 - 16 November 2023, Düsseldorf, Germany. The medical technology market is in worldwide motion and the signs ahead of MEDICA 2023 and COMPAMED 2023 in Düsseldorf as the internationally leading...

Smartphone Technology Expected to Advanc…

Since the 1980s, we have known that neurological soft signs (NSS) can distinguish people with schizophrenia from psychiatrically healthy individuals. NSS are subtle neurological impairments that principally manifest as decreased...