Can the AI Driving ChatGPT Help to Detect Early Signs of Alzheimer's Disease?

The artificial intelligence algorithms behind the chatbot program ChatGPT - which has drawn attention for its ability to generate humanlike written responses to some of the most creative queries - might one day be able to help doctors detect Alzheimer's Disease in its early stages. Research from Drexel University’s School of Biomedical Engineering, Science and Health Systems recently demonstrated that OpenAI's GPT-3 program can identify clues from spontaneous speech that are 80% accurate in predicting the early stages of dementia.

Reported in the journal PLOS Digital Health, the Drexel study is the latest in a series of efforts to show the effectiveness of natural language processing programs for early prediction of Alzheimer's - leveraging current research suggesting that language impairment can be an early indicator of neurodegenerative disorders.

Finding an Early Sign

The current practice for diagnosing Alzheimer's Disease typically involves a medical history review and lengthy set of physical and neurological evaluations and tests. While there is still no cure for the disease, spotting it early can give patients more options for therapeutics and support. Because language impairment is a symptom in 60-80% of dementia patients, researchers have been focusing on programs that can pick up on subtle clues - such as hesitation, making grammar and pronunciation mistakes and forgetting the meaning of words - as a quick test that could indicate whether or not a patient should undergo a full examination.

"We know from ongoing research that the cognitive effects of Alzheimer's Disease can manifest themselves in language production," said Hualou Liang, PhD, a professor in Drexel’s School of Biomedical Engineering, Science and Health Systems and a coauthor of the research. "The most commonly used tests for early detection of Alzheimer's look at acoustic features, such as pausing, articulation and vocal quality, in addition to tests of cognition. But we believe the improvement of natural language processing programs provide another path to support early identification of Alzheimer's."

A Program that Listens and Learns

GPT-3, officially the third generation of OpenAI’s General Pretrained Transformer (GPT), uses a deep learning algorithm - trained by processing vast swaths of information from the internet, with a particular focus on how words are used, and how language is constructed. This training allows it to produce a human-like response to any task that involves language, from responses to simple questions, to writing poems or essays.

GPT-3 is particularly good at "zero-data learning" - meaning it can respond to questions that would normally require external knowledge that has not been provided. For example, asking the program to write "Cliff’s Notes" of a text, would normally require an explanation that this means a summary. But GPT-3 has gone through enough training to understand the reference and adapt itself to produce the expected response.

"GPT3's systemic approach to language analysis and production makes it a promising candidate for identifying the subtle speech characteristics that may predict the onset of dementia," said Felix Agbavor, a doctoral researcher in the School and the lead author of the paper. "Training GPT-3 with a massive dataset of interviews - some of which are with Alzheimer's patients - would provide it with the information it needs to extract speech patterns that could then be applied to identify markers in future patients."

Seeking Speech Signals

The researchers tested their theory by training the program with a set of transcripts from a portion of a dataset of speech recordings compiled with the support of the National Institutes of Health specifically for the purpose of testing natural language processing programs' ability to predict dementia. The program captured meaningful characteristics of the word-use, sentence structure and meaning from the text to produce what researchers call an "embedding" - a characteristic profile of Alzheimer's speech.

They then used the embedding to re-train the program - turning it into an Alzheimer's screening machine. To test it they asked the program to review dozens of transcripts from the dataset and decide whether or not each one was produced by someone who was developing Alzheimer's.

Running two of the top natural language processing programs through the same paces, the group found that GPT-3 performed better than both, in terms of accurately identifying Alzheimer’s examples, identifying non-Alzheimer's examples and with fewer missed cases than both programs.

A second test used GPT-3’s textual analysis to predict the score of various patients from the dataset on a common test for predicting the severity of dementia, called the Mini-Mental State Exam (MMSE).

The team then compared GPT-3’s prediction accuracy to that of an analysis using only the acoustic features of the recordings, such as pauses, voice strength and slurring, to predict the MMSE score. GPT-3 proved to be almost 20% more accurate in predicting patients’ MMSE scores.

"Our results demonstrate that the text embedding, generated by GPT-3, can be reliably used to not only detect individuals with Alzheimer's Disease from healthy controls, but also infer the subject's cognitive testing score, both solely based on speech data," they wrote. "We further show that text embedding outperforms the conventional acoustic feature-based approach and even performs competitively with fine-tuned models. These results, all together, suggest that GPT-3 based text embedding is a promising approach for AD assessment and has the potential to improve early diagnosis of dementia."

Continuing the Search

To build on these promising results, the researchers are planning to develop a web application that could be used at home or in a doctor’s office as a pre-screening tool.

"Our proof-of-concept shows that this could be a simple, accessible and adequately sensitive tool for community-based testing," Liang said. "This could be very useful for early screening and risk assessment before a clinical diagnosis."

Felix Agbavor, Hualou Liang.
Predicting dementia from spontaneous speech using large language models.
PLOS Digital Health, 2022. doi: 10.1371/journal.pdig.0000168

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

New Computer Models Open Door to Far Mor…

With antibiotic resistance a growing problem, University of Virginia School of Medicine researchers have developed cutting-edge computer models that could give the disease-fighting drugs a laser-like precision to target only...

New Biomarkers to Detect Colorectal Canc…

Machine learning and artificial intelligence (AI) techniques and analysis of large datasets have helped University of Birmingham researchers to discover proteins that have strong predictive potential for colorectal cancer. In a...

Sam Neville Joins the Highland Marketing…

Leading chief nursing information officer Sam Neville is joining the Highland Marketing advisory board. Sam brings a passion for nursing and safety to the board, which debates the big issues...

AI Model Identifies Potential Risk Genes…

Researchers from the Cleveland Clinic Genome Center have successfully applied advanced artificial intelligence (AI) genetics models to Parkinson's disease. Researchers identified genetic factors in progression and FDA-approved drugs that can...

AI Tool that may Assist Underserved Hosp…

As the fields of healthcare and technology increasingly evolve and intersect, researchers are collaborating on the best ways to use emerging technologies such as artificial intelligence (AI) to care for...