Scientists Synthesized a Yellow Fever Drug Suggested by AI

Yellow fever is a deadly disease in overpopulated tropical regions of Africa and South America. Infected people have a temperature increase to 39-41°C, chills, severe headache, nausea, and vomiting. The patient’s face becomes dull, the eyelids swell and the skin turns yellow due to liver damage (hence the name of the disease). Before the yellow fever vaccine was developed, the infection claimed thousands of lives for example in 1871, 8 percent of the population of Buenos Aires died in the epidemic. In mosquito-infested areas, where the vaccination is not readily available to the majority of the population, outbreaks of infection still occur. The yellow fever virus, as well as its related flaviviruses causing Zika and Dengue fever, is treated only by symptomatic treatment, as there are no specific drugs. An international team of scientists used artificial intelligence to select from a vast array of molecules that might be suitable for this purpose. Scientists from the Research Centre of Biotechnology of the Russian Academy of Sciences developed the technology and purchased or synthesized five of the most promising compounds and investigated their activity. The research was conducted in cooperation with Collaborations Pharmaceuticals, Inc. a private company specializing in innovative therapeutics for multiple rare and infectious diseases (based in the USA), São Carlos Institute of Physics, University of São Paulo (Brazil) along with support from the NIH, NIAID (USA).

"Our team used a predictive computer model in combination with several machine learning methods. For model training, we relied on in vitro screening data and information available in existing databases to select identify the ideal molecule features for desired activity. With the help of these computational models we predicted their bioactivity before testing them in vitro using NIAID resources," - explains Vadim Makarov, the co-author, Dr.Sci. (Pharmacy), the head of the Laboratory for Biomedicinal Chemistry of Research Centre of Biotechnology RAS.

Typically, only one of the 5,000 molecules that survived experimental testing is given a chance to reach the pharmacy counter. Others are too toxic, hard to produce, disintegrate in the body, or show too little activity in the real body compared to the test tube. Selection is even more rigorous before the experiments. Even if you focus on the hundreds of thousands of molecules that are known to science that are used or used to treat something else, testing them all not the same on animals and humans, but even in vitro would be almost infinite. To make the first stages of experiments cheaper and faster, scientists use computer simulations and try to convert some of the initial tests into virtual ones. In the next stage, they are also assisted by high-throughput screening, during which "the robot dispenser" automatically dispenses tiny amounts of active substances into the microplates that contain cells infected with virus. The researcher then evaluates which compounds kill the virus.

The authors of the paper created computer models that can self-learn, comparing chemical compounds according to certain structural rules. Machine learning requires as much basic information from molecules wit or without activity as possible. For this purpose, scientists took information from public databases on small medicinal molecules and studied scientific publications on yellow fever virus research on cells. The models helped propose five of the most promising molecules that would fight the virus in human cells. Scientists have then tested these molecules and found the optimal concentration at which they should work. For the most efficient substance, the half-maximal effective concentration was 3.2 uM (equal to one mole of active substance per liter).

"The molecule we choose relates to the derivatives of pyrazosulphonamide. Its activity with the yellow fever virus is so great that we can talk about a potential drug. The structure of this molecule provides ample opportunity for further modification, which could greatly expand the list of potentially affordable yellow fever drugs. If the tests are successful, we will receive an entirely new group of drugs to fight this dangerous disease," - says Vadim Makarov.

Gawriljuk VO, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS, Oliva G, Ekins S.
Development of Machine Learning Models and the Discovery of a New Antiviral Compound against Yellow Fever Virus.
J Chem Inf Model. 2021 Aug 23;61(8):3804-3813. doi: 10.1021/acs.jcim.1c00460

Most Popular Now

AI Tool Helps Predict Relapse of Pediatr…

Artificial intelligence (AI) shows tremendous promise for analyzing vast medical imaging datasets and identifying patterns that may be missed by human observers. AI-assisted interpretation of brain scans may help improve...

Detecting Lung Cancer 4 Months Earlier a…

GPs may soon be able to identify patients with an increased risk of lung cancer up to 4 months earlier than is currently the case. The GP should be able...

Infectious Disease Surveillance Platform…

The Biothreats Emergence, Analysis and Communications Network (BEACON) leverages advanced artificial intelligence (AI), large language models (LLMs) and a network of globally based experts to rapidly collect, analyze, and disseminate...

Children's Health Ireland to Transf…

Healthcare teams responsible for paediatric care in Ireland are to save significant time in accessing important diagnostic imaging and reports, with the help of a new agreement with medical imaging...

NHS, Councils, and Housing could Share N…

A new technology partnership formally announced, could help NHS, local government, and housing organisations collaborate to create an unprecedented understanding of the risks and needs of people in their care...

AI-Powered Analysis of Stent Healing

Each year, more than three million people worldwide are treated with stents to open blocked blood vessels caused by heart disease. However, monitoring the healing process after implantation remains a...

Right Patient, Right Dose, Right Time

While artificial intelligence (AI) has shown promising potential, much of its use has remained theoretical or retrospective. Turning its potential into real-world healthcare outcomes, researchers at the Yong Loo Lin...

An AI Tool Grounded in Evidence-Based Me…

A powerful clinical artificial intelligence tool developed by University at Buffalo biomedical informatics researchers has demonstrated remarkable accuracy on all three parts of the United States Medical Licensing Exam (Step...

AXREM and BHTA Name Highland as 'Fu…

Hosted by trade associations AXREM and the British Healthcare Trades Association (BHTA), 'The Future of MedTech - Innovating for Tomorrow', will allow delegates to engage with speakers from the government...